基于物聯(lián)網(wǎng)和大數(shù)據(jù)的工廠能耗分析平臺(tái)的研究
[Abstract]:With the introduction of the concept of industry 4.0, intelligence has become an inevitable trend of industrial development. The Internet of things, which combines communication technology, network technology and sensor technology, will provide data support for industrial intelligence. In order to meet the demand of industrial intelligence, the number of Internet of things equipment in the industrial production environment will gradually increase, and the amount of data generated by the industrial Internet of things will also become larger and larger. How to deal with mass Internet of things data in industrial production effectively becomes an urgent problem. In order to meet the urgent need of big data processing technology in the industrial field, this paper carries out systematic research and architecture design combined with the characteristics of industrial big data, and realizes a modular and portable big data analysis platform for industrial energy consumption. First of all, this paper briefly describes the development of wireless sensor network and big data, and analyzes the urgent needs of big data related technologies in industrial production and management. The related technologies used in the energy consumption big data analysis platform are briefly introduced, and then, the requirements of the users for the data query function and the big data analysis function of the energy consumption big data analysis platform are analyzed in detail. Based on the background of industrial production environment and industrial big data characteristics, the system architecture of energy consumption big data platform is studied, designed and demonstrated. Finally, the system is designed as sensor network layer. Then, the deployment and implementation of the sensor network layer, and the selection, deployment and optimization of the highly usable and extensible big data platform layer suitable for industrial production environment are completed. Then, the necessity and feasibility of the middleware layer are studied and demonstrated with reference to the existing conditions and user requirements of the factory, and the modularization design and implementation of the middleware layer are completed. Finally, on the basis of the big data platform layer, Through the task scheduling and function connection of middleware layer, the statistical query function of energy consumption data, the real-time query function and the data analysis function based on complex model are realized. Finally, the design scheme of energy consumption big data analysis platform is verified in the production environment, and the energy saving strategy is put forward by analyzing the energy consumption data.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN929.5;TP311.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張紅;王曉明;曹潔;馬彥宏;郭義戎;王a\;;Hadoop云平臺(tái)MapReduce模型優(yōu)化研究[J];計(jì)算機(jī)工程與應(yīng)用;2016年22期
2 高見文;薛行貴;羅杰;姜源;吳啟武;;基于迭代式MapReducede的海量數(shù)據(jù)并行聚類算法研究[J];中國科技論文;2016年14期
3 吳卉男;;大數(shù)據(jù)系統(tǒng)和分析技術(shù)綜述[J];信息記錄材料;2016年03期
4 冷建飛;高旭;朱嘉平;;多元線性回歸統(tǒng)計(jì)預(yù)測(cè)模型的應(yīng)用[J];統(tǒng)計(jì)與決策;2016年07期
5 洪萬帆;蘇淑靖;;基于無線傳感器網(wǎng)絡(luò)的數(shù)據(jù)采集系統(tǒng)設(shè)計(jì)[J];電子器件;2016年01期
6 王慶福;;線性回歸算法在個(gè)性化推薦中應(yīng)用研究[J];電腦編程技巧與維護(hù);2015年23期
7 李振;賈瑞玉;;一種改進(jìn)的K-means蟻群聚類算法[J];計(jì)算機(jī)技術(shù)與發(fā)展;2015年12期
8 程雙江;李世平;鄔肖敏;鄭堂;;基于改進(jìn)混合核SVM的非線性組合預(yù)測(cè)[J];計(jì)量技術(shù);2015年10期
9 武霞;董增壽;孟曉燕;;基于大數(shù)據(jù)平臺(tái)hadoop的聚類算法K值優(yōu)化研究[J];太原科技大學(xué)學(xué)報(bào);2015年02期
10 劉旺鎖;王平波;顧雪峰;;混合高斯參數(shù)估計(jì)的兩種EM算法比較[J];聲學(xué)技術(shù);2014年06期
相關(guān)博士學(xué)位論文 前1條
1 花小朋;非平行超平面分類器算法研究[D];中國礦業(yè)大學(xué);2015年
相關(guān)碩士學(xué)位論文 前2條
1 童冰彬;基于分布式海量數(shù)據(jù)處理的協(xié)作無線傳感器網(wǎng)絡(luò)架構(gòu)[D];南京郵電大學(xué);2015年
2 朱敏明;基于YARN框架下并行化計(jì)算的研究[D];西北師范大學(xué);2015年
,本文編號(hào):2197289
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2197289.html