混沌噪聲背景下微弱脈沖信號(hào)的檢測(cè)與恢復(fù)
[Abstract]:Weak signal is a weak signal which can not be detected by traditional and general methods. The so-called weak signal is not only that the amplitude of the signal is very small, but mainly refers to the signal which is submerged by noise and has low signal-to-noise ratio (SNR). Weak signal detection is based on the methods of electronics, information theory and probability statistics to study the characteristics of the measured signal, analyze the causes of the noise, detect and estimate the weak signal submerged by the background noise. Weak signal detection is an important means for people to obtain information. It is widely used in many fields. With the development of science and technology, the need for weak signal detection and recovery is becoming more and more urgent. Chaotic (Chaos) is a seemingly irregular motion. In deterministic nonlinear systems, stochastic behavior can occur without any additional random factors. It widely exists in many fields such as meteorology, hydrology, communication and so on. With the development and application of chaos theory in various fields, the detection and estimation of weak pulse signal using chaos theory has become a development trend. The detection and recovery of weak signals submerged in chaotic noise background signal, especially the weak pulse signal under chaotic noise background, are of great significance to signal processing in theory and practice. In this paper, based on the short-term predictability of chaotic signals and their sensitivity to small perturbations, the phase space reconstruction of observed signals is carried out, and a local linear autoregressive model (Local Linear Autoregressive model LLAR) is established for single-step prediction, and the prediction errors are obtained. The hypothesis test method is used to detect whether the observation signal contains weak pulse signal from the prediction error. Then, the single point jump model of weak pulse signal is established, and the local linear autoregressive model is fused to form a bilocal linear model, (Double Local Linear model-DLL), which optimizes the mean square prediction error of the minimized DLL model. The parameters of the model are estimated by backward fitting algorithm, and the weak pulse signal under the background of chaotic noise is finally recovered. Finally, based on the typical chaotic time series Lorenz system, the simulation results show that the proposed model has a good effect on the detection and recovery of weak pulse signal in chaotic noise background.
【學(xué)位授予單位】:重慶理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN911.23
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 汪祥莉;王文波;;Harmonic signal extraction from noisy chaotic interference based on synchrosqueezed wavelet transform[J];Chinese Physics B;2015年08期
2 張強(qiáng);行鴻彥;;基于EMD方差特性的混沌信號(hào)自適應(yīng)去噪算法[J];電子學(xué)報(bào);2015年05期
3 李夢(mèng)平;許雪梅;楊兵初;丁家峰;;A circular zone counting method of identifying a Duffing oscillator state transition and determining the critical value in weak signal detection[J];Chinese Physics B;2015年06期
4 魏德志;陳福集;鄭小雪;;基于混沌理論和改進(jìn)徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)輿情預(yù)測(cè)方法[J];物理學(xué)報(bào);2015年11期
5 鄭紅利;行鴻彥;徐偉;;混沌背景中微弱信號(hào)檢測(cè)的回聲狀態(tài)網(wǎng)絡(luò)方法[J];信號(hào)處理;2015年03期
6 行鴻彥;張強(qiáng);徐偉;;混沌海雜波背景下的微弱信號(hào)檢測(cè)混合算法[J];物理學(xué)報(bào);2015年04期
7 行鴻彥;朱清清;徐偉;;一種混沌海雜波背景下的微弱信號(hào)檢測(cè)方法[J];物理學(xué)報(bào);2014年10期
8 蘇理云;殷勇;李晨龍;;應(yīng)用多項(xiàng)式系數(shù)統(tǒng)計(jì)模型的人口預(yù)測(cè)[J];重慶理工大學(xué)學(xué)報(bào)(自然科學(xué));2014年04期
9 馬盡文;青慈陽;;對(duì)角型廣義RBF神經(jīng)網(wǎng)絡(luò)與非線性時(shí)間序列預(yù)測(cè)[J];信號(hào)處理;2013年12期
10 陳軍;;基于混沌理論的檢測(cè)系統(tǒng)應(yīng)用研究綜述[J];甘肅高師學(xué)報(bào);2013年02期
相關(guān)博士學(xué)位論文 前2條
1 張雪鋒;混沌序列生成技術(shù)及其若干應(yīng)用研究[D];西安電子科技大學(xué);2011年
2 袁繼敏;基于混沌和神經(jīng)網(wǎng)絡(luò)的時(shí)域參數(shù)測(cè)試研究及其在示波器中的應(yīng)用[D];電子科技大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 張亞璇;混沌雷達(dá)波形設(shè)計(jì)及弱信號(hào)檢測(cè)研究[D];電子科技大學(xué);2015年
2 李晨龍;基于自回歸模型的混沌時(shí)間序列預(yù)測(cè)與應(yīng)用[D];重慶理工大學(xué);2015年
3 蔡志全;強(qiáng)噪聲背景下微弱信號(hào)檢測(cè)與處理方法研究[D];內(nèi)蒙古科技大學(xué);2014年
4 崔笑笑;混沌時(shí)間序列處理及其應(yīng)用[D];山東大學(xué);2012年
5 張敏;基于混沌理論的微弱信號(hào)檢測(cè)原理及其在金屬探測(cè)器中的應(yīng)用研究[D];山東大學(xué);2011年
6 鄭皓洲;混沌同步及在雷達(dá)中的應(yīng)用研究[D];電子科技大學(xué);2011年
7 王麗霞;混沌弱信號(hào)檢測(cè)技術(shù)[D];哈爾濱工程大學(xué);2011年
8 魏新建;基于Duffing混沌振子的弱信號(hào)檢測(cè)方法[D];天津大學(xué);2010年
9 李繼永;基于混沌振子的微弱信號(hào)檢測(cè)技術(shù)研究[D];電子科技大學(xué);2010年
10 劉洋;混沌背景中信號(hào)提取的相空間投影法[D];吉林大學(xué);2009年
,本文編號(hào):2196883
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2196883.html