Stokes空間中的偏振解復(fù)用技術(shù)研究
[Abstract]:In recent years, with the large-scale development of cloud computing and big data services, the demand for information transmission rate and bandwidth is increasing day by day. At present, optical fiber communication as a high speed, large capacity and relatively stable mode of information transmission, has become the only way to solve this need. Polarization multiplexing (Polarization Division Multiplexing, PDM) can directly improve the spectral efficiency by using the polarization characteristics of optical waves and transmitting two channels of signals with the same wavelength polarization state perpendicular to each other in the same channel. At present, PDM technology has been applied to long-distance optical fiber communication system. Compared with the coherent detection demultiplexing technology with complex structure, high cost and large computation, the direct detection demultiplexing technique is more suitable for the detection of short distance optical fiber transmission system because of its low cost and low complexity. At the same time, compared with the Jones matrix space, because of the special three-dimensional space representation method, the signal polarization state (State of Polarization, SOP) and its changing process in transmission can be expressed more intuitively and concretely. So it can flexibly realize polarization demultiplexing and link damage compensation by combining it with digital signal processing technology (Digital Signal Processor, DSP) in electrical domain. Based on the technical principle of PDM, the feasibility of Stokes vector analysis algorithm is studied and verified by software simulation and experimental verification for direct detection of short distance optical fiber transmission system. First of all, based on the theoretical analysis of PDM, this paper introduces the definition, classification, description of polarized light, as well as several commonly used polarization devices and PDM implementation methods. The effects of dispersive (Chromatic Dispersion, CD), random birefringent (Randomly Varying Birefringence), polarization mode dispersion (Polarization Mode Dispersion, PMD) and polarization-dependent loss (Polarization Dependent) on the performance of PDM systems are briefly analyzed. The common methods of polarization demultiplexing for coherent detection and direct detection are briefly introduced, and a simplified Stokes vector algorithm is proposed for Intensity Modulation-Direct detection (IM/DD) system, which simplifies the structure of polarization demultiplexing. The complexity of the algorithm and the cost of the system are reduced. Secondly, the simulation model of PDM-IM/DD system is built by using VPItransmissionMakerTM optical communication simulation platform. The feasibility of the Stokes space and the simplified Stokes vector analysis algorithm is verified, and the conclusion that the polarization demultiplexing effect of the two algorithms is basically the same is obtained. At the same time, the effects of dispersion, polarization mode dispersion (PMD) and polarization dependent loss (PDL) on the transmission performance of PDM-IM/DD systems are analyzed. The simulation results show that the influence of PMD and PDL on the transmission performance of PDM-IM/DD short distance transmission system is negligible. Finally, the single polarization OOK signal transmission system of 20-Gbit/s and the PDM-IM/DD transmission experiment system of 2 脳 10-Gbit/s are built. The performance of the two systems is compared and analyzed at different transmission distances (back to back 10-kmg 25-km), which verifies the feasibility of simplified Stokes algorithm in PDM-IM/DD systems. The experimental results show that under the same BER (10-4), the power loss costs of PDM systems with different transmission distances (back-to-back 10-km) are only 0.3-dB 0.2-dBO 0.2-dBand PDM systems with the same BER (10-4), respectively, compared with single-polarization systems, the power loss costs of PDM systems are only 0.3-dBU 0.2-dBO 0.2-dB0.2dB. the BER of PDM systems is the same (10-4). Compared with the case of back-to-back transmission of 10-km and 25-km, the cost of power loss is only 1-dB and 1.7 dB, respectively.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TN929.11
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;Demodulated method of optical fiber Stokes temperature sensors[J];Optoelectronics Letters;2006年05期
2 歐陽柏平;;Stokes方程的結(jié)構(gòu)穩(wěn)定性研究[J];福建電腦;2010年03期
3 徐百平;馮彥洪;何亮;陳金偉;;矩形腔內(nèi)Stokes流動(dòng)混合過程追蹤模擬[J];數(shù)值計(jì)算與計(jì)算機(jī)應(yīng)用;2009年02期
4 鄧晶;林季鵬;黃見洪;鄭暉;李錦輝;史斐;戴殊韜;翁文;康治軍;江雄;劉嘉;林文雄;;High peak power first,second,and third order Stokes pulses based on intracavity self-stimulated Raman scattering lasers[J];Chinese Optics Letters;2010年03期
5 史永基,史建軍,史紅軍;基于FLCM的太陽Stokes矢量偏振測(cè)量術(shù)[J];液晶與顯示;2003年04期
6 宋志平;洪津;喬延利;;強(qiáng)度調(diào)制法測(cè)量Stokes矢量元素譜原理研究[J];量子電子學(xué)報(bào);2009年03期
7 王立福;王志斌;李曉;陳友華;張瑞;張鵬飛;;彈光調(diào)制偏振Stokes參量測(cè)量及誤差分析[J];激光技術(shù);2014年02期
8 ;Laser Cooling Using Anti-Stokes Fluorescence in Yb~(3+)-Doped Fluorozirconate Glasses[J];Wuhan University Journal of Natural Sciences;2002年02期
9 ;Statistical characteristics of the normalized Stokes parameters[J];Science in China(Series F:Information Sciences);2008年10期
10 李宇波;張鵬;曾宇驍;楊建義;周強(qiáng);江曉清;王明華;;基于電光調(diào)制器的全Stokes矢量的遙感測(cè)量[J];紅外與激光工程;2010年02期
相關(guān)會(huì)議論文 前10條
1 Liu Wenwen;Peng Jie;;A study of the Stokes' first problem of thixotropic fluid[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
2 唐元義;許厚澤;;大地測(cè)量邊值問題Stokes積分法與自然邊界元法的比較[A];中國(guó)地球物理·2009[C];2009年
3 許婧;傅克祥;李象遠(yuǎn);;Stokes頻移的時(shí)間相關(guān)性[A];第九屆全國(guó)化學(xué)動(dòng)力學(xué)會(huì)議論文摘要集[C];2005年
4 ;An Efficient Solver for the Stokes Equations with Random Inputs[A];Information Technology and Computer Science—Proceedings of 2012 National Conference on Information Technology and Computer Science[C];2012年
5 朱克勤;;從Stokes第一問題的精確解談起[A];力學(xué)史與方法論論文集[C];2003年
6 林啟訓(xùn);童金華;傅英;李婧;陳雪珍;陳麗華;黃晉之;;基于Stokes的枇杷葉植物飲料研究[A];福建省農(nóng)業(yè)工程學(xué)會(huì)2006年學(xué)術(shù)年會(huì)論文集[C];2006年
7 朱克勤;;從Stokes第一問題的精確解談起[A];力學(xué)史與方法論論文集[C];2003年
8 李小林;祝家麟;;定常Stokes問題的無網(wǎng)格Galerkin方法[A];第五屆全國(guó)青年計(jì)算物理學(xué)術(shù)交流會(huì)論文摘要[C];2008年
9 孔瑋;;Stokes層的線性穩(wěn)定性:高波數(shù)的結(jié)果[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
10 ;Optimal Design for Geometry of Blade and Boundary Shape Control of Navier-Stokes Equations[A];計(jì)算流體力學(xué)研究進(jìn)展——第十二屆全國(guó)計(jì)算流體力學(xué)會(huì)議論文集[C];2004年
相關(guān)博士學(xué)位論文 前10條
1 彭偉敏;不可壓縮Navier-Stokes方程的幾類整體大解[D];復(fù)旦大學(xué);2013年
2 尹海燕;可壓縮Navier-Stokes-Poisson議程波的穩(wěn)定性[D];華中師范大學(xué);2015年
3 張麟;等熵可壓縮Navier-Stokes方程解的整體適定性與大時(shí)間性態(tài)[D];南京大學(xué);2015年
4 王梅;關(guān)于等熵可壓Navier-Stokes方程一些數(shù)學(xué)理論的研究[D];西北大學(xué);2015年
5 翁智峰;對(duì)流占優(yōu)問題和Stokes特征值問題的穩(wěn)定化有限元方法[D];武漢大學(xué);2015年
6 厚曉鳳;可壓縮Navier-Stokes-Korteweg方程組整體經(jīng)典解的存在性[D];華中師范大學(xué);2016年
7 朱圣國(guó);可壓等熵Navier-Stokes方程組的適定性和奇性形成[D];上海交通大學(xué);2015年
8 王尕平;Stokes流問題中的辛體系方法[D];大連理工大學(xué);2008年
9 戴曉霞;求解Navier-Stokes方程的幾類數(shù)值方法[D];浙江大學(xué);2009年
10 葛志昊;關(guān)于時(shí)滯反應(yīng)擴(kuò)散方程組和Navier-Stokes方程解的性質(zhì)的研究[D];西安交通大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 施海紅;求解可壓縮Navier-Stokes方程的高分辨率熵相容格式[D];長(zhǎng)安大學(xué);2015年
2 賈慧勇;Navier-Stokes/Darcy流耦合問題的解耦方法研究[D];太原理工大學(xué);2016年
3 李倩;流體力學(xué)方程穩(wěn)定化方法研究[D];太原理工大學(xué);2016年
4 周馨雨;Stokes空間中的偏振解復(fù)用技術(shù)研究[D];西南交通大學(xué);2016年
5 黃玉萍;二維不可壓縮Navier-Stokes方程流體動(dòng)力學(xué)數(shù)值模擬研究[D];昆明理工大學(xué);2016年
6 宋小亞;變區(qū)域上二維Navier-Stokes方程的拉回吸引子[D];蘭州大學(xué);2016年
7 蘇奕帆;非等熵Navier-Stokes-Maxwell方程解的大時(shí)間行為[D];華中師范大學(xué);2016年
8 陳金環(huán);幾個(gè)高精度單元的分析和Stokes問題的二階格式[D];鄭州大學(xué);2004年
9 王沖沖;Stokes外問題的區(qū)域分解法[D];北方工業(yè)大學(xué);2009年
10 李冠軍;平面曲管Stokes流問題中的哈密頓體系方法[D];大連理工大學(xué);2009年
,本文編號(hào):2185835
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2185835.html