LTE中廣播多播服務(wù)的資源分配算法研究
[Abstract]:With the vigorous development of mobile internet, the proportion of multimedia services in mobile communication services is increasing. Efficient use of multimedia broadcast multicast technology (MBMS) to transmit multimedia services has become a research hotspot. MBMS technology can greatly alleviate the growing demand for resources through wireless resource sharing. The research of S resource allocation algorithm can further improve the resource utilization of multicast system and the user experience of multicast users. LTE MBMS includes single frequency network (MBSFN) and single cell transmission mode, which have different application scenarios. This paper studies the resource allocation algorithm based on single cell mode. Link physical resources and resource allocation framework are studied. The network architecture, channel support, protocol stack, transmission mode and service flow of MBMS in LTE are analyzed. The classical unicast resource allocation algorithms, including single-rate algorithm and multi-rate algorithm, are compared with the classical unicast resource allocation algorithms in LTE. This paper designs a dynamic modulation coding strategy (MCS) selection scheme and a resource allocation algorithm based on Kuhn-Munkres algorithm to overcome the shortcomings of the current single-rate resource allocation algorithm, and designs a priority-based hierarchical multi-rate MBMS resource allocation algorithm PLRA to overcome the shortcomings of the current multi-rate allocation algorithm. The real platform can not meet the simulation requirements, so a system-level simulation platform for MBMS based on Python is designed and implemented. Dynamic MCS selection scheme adjusts the average packet loss rate of each multicast group, which can effectively improve the system throughput under the given packet loss rate threshold. Three single-rate resource allocation algorithms are proposed, including D-BKM, D-IKM and D-MaxKM.D-BKM. Kuhn-Munkres algorithm is used to allocate resource blocks with minimum rate guarantees, and then the maximum throughput principle is used for the second allocation. D-MaxKM algorithm is the inverse of D-BKM algorithm. Firstly, the maximum throughput principle is used to allocate resource blocks, then the redundant resource blocks are searched from the allocated resource blocks, and the Kuhn-Munkres algorithm is used to allocate the redundant resource blocks and the multicast groups which do not meet the minimum rate requirements. The algorithm PLRA is divided into two stages: primary allocation and extended layer allocation. In the primary allocation, multicast groups with fewer resource blocks are satisfied, and fairness factor is introduced to improve the rate fairness when the system capacity is insufficient. In the extended layer allocation, a priority calculation method is designed to give priority to resource blocks allocation. The system-level simulation platform of MBMS based on Python language can be designed and implemented to verify the proposed algorithm in a variety of scenarios, such as system throughput, packet loss rate, rate satisfaction, rate fairness and frequency. Simulation results show that the three algorithms designed in Chapter 3 can improve the system throughput under the condition of guaranteeing the lowest traffic rate. Among the three algorithms, D-MaxKM algorithm has the largest throughput, while D-IKM algorithm can effectively improve the efficiency of D-BKM algorithm by estimating the number of resource blocks and D-MaxKM algorithm has the highest throughput. The performance of IKM algorithm is almost the same as that of D-BKM algorithm. In the fourth chapter, the improved PLRA algorithm can effectively improve the throughput and fairness of Hierarchical Multicast System at the expense of a small amount of spectral efficiency.
【學位授予單位】:電子科技大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TN929.5
【相似文獻】
相關(guān)期刊論文 前10條
1 史琰;劉增基;盛敏;;一種保證負載均衡的網(wǎng)絡(luò)資源分配算法[J];西安電子科技大學學報;2005年06期
2 張永暉;林漳希;劉建華;梁泉;;用于多宿容遲移動網(wǎng)絡(luò)的實時資源分配算法[J];微電子學與計算機;2013年03期
3 滕穎蕾;宋梅;劉媛媛;楊睿哲;宋俊德;;基于網(wǎng)絡(luò)編碼的用戶協(xié)作博弈資源分配算法[J];北京郵電大學學報;2011年03期
4 ;下期要目[J];廣東通信技術(shù);2012年03期
5 張皓;周志杰;惠毅;趙陸文;伍云;;一種基于合作博弈框架的跨層資源分配算法[J];系統(tǒng)仿真學報;2009年23期
6 李云;賈雯;馬亞飛;朱德利;;聯(lián)合資源分配算法在協(xié)作系統(tǒng)中的應(yīng)用[J];計算機應(yīng)用研究;2014年07期
7 楊安錦;郝林;李彤;李經(jīng)磊;;軟件演化過程中的資源管理研究[J];云南大學學報(自然科學版);2007年S2期
8 曲樺;王賀男;趙季紅;;多虛擬業(yè)務(wù)平面中的動態(tài)資源分配算法[J];北京郵電大學學報;2013年05期
9 梁靚;馮鋼;;兩跳中繼網(wǎng)絡(luò)的資源分配算法[J];電子科技大學學報;2013年06期
10 胡瑩;黃永明;俞菲;楊綠溪;;基于能效優(yōu)化的用戶調(diào)度與資源分配算法[J];電子與信息學報;2012年08期
相關(guān)會議論文 前6條
1 傅曉;田廷劍;王軍;李少謙;;一種新的多用戶MIMO-OFDM資源分配算法[A];2008年中國西部青年通信學術(shù)會議論文集[C];2008年
2 曲樺;梁思遠;趙季紅;;基于容量的相對最小影響資源分配算法[A];中國通信學會通信軟件技術(shù)委員會2009年學術(shù)會議論文集[C];2009年
3 李強;梁煒;;面向無線HART網(wǎng)絡(luò)的動態(tài)資源分配算法研究[A];2008’“先進集成技術(shù)”院士論壇暨第二屆儀表、自動化與先進集成技術(shù)大會論文集[C];2008年
4 黃國剛;何加銘;張青波;;WiMAX資源分配算法研究[A];浙江省電子學會2009學術(shù)年會論文集[C];2009年
5 樊慶利;郝麗賢;;一種GPRS資源分配算法及其實現(xiàn)[A];2012全國無線及移動通信學術(shù)大會論文集(下)[C];2012年
6 蔡木林;蔡躍明;;OFDM中繼信道節(jié)點選擇與資源分配算法[A];第十四屆全國信號處理學術(shù)年會(CCSP-2009)論文集[C];2009年
相關(guān)博士學位論文 前5條
1 嚴俊坤;認知雷達中的資源分配算法研究[D];西安電子科技大學;2015年
2 金慈航;OFDM系統(tǒng)中基于對偶分解理論的資源分配算法[D];中國科學技術(shù)大學;2008年
3 李松;多天線多播系統(tǒng)資源分配算法研究[D];北京郵電大學;2012年
4 徐雷;OFDM無線網(wǎng)絡(luò)資源分配技術(shù)研究[D];南京航空航天大學;2012年
5 劉慎發(fā);分布式天線通信系統(tǒng)中的關(guān)鍵技術(shù)研究[D];北京郵電大學;2007年
相關(guān)碩士學位論文 前10條
1 梁藍;LTE-A系統(tǒng)基于干擾減小的D2D通信資源分配算法研究[D];西南交通大學;2015年
2 張旭;蜂窩網(wǎng)絡(luò)中D2D通信的聯(lián)合模式選擇和資源分配算法研究[D];長安大學;2015年
3 岳元貞;基于信用度的云媒體資源分配算法[D];中國海洋大學;2015年
4 蔡雪佳;移動蜂窩網(wǎng)絡(luò)中D2D通信資源分配算法研究[D];東南大學;2015年
5 崔宇軒;一種基于定價的衛(wèi)星網(wǎng)絡(luò)選路及帶寬資源分配算法[D];西安電子科技大學;2015年
6 單政揚;802.11ax D2D干擾分析及資源分配算法研究[D];西南交通大學;2016年
7 牛紅威;基于WFRFT的混合載波系統(tǒng)的資源分配算法研究[D];哈爾濱工業(yè)大學;2016年
8 劉應(yīng)濤;LTE中廣播多播服務(wù)的資源分配算法研究[D];電子科技大學;2016年
9 江愛珍;CRAHNs網(wǎng)絡(luò)中基于Massive MIMO的資源分配方案研究[D];南京郵電大學;2016年
10 王婷婷;網(wǎng)絡(luò)資源分配算法研究[D];華東師范大學;2010年
,本文編號:2182974
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2182974.html