2D轉(zhuǎn)3D視頻系統(tǒng)中運動檢測算法的研究及實現(xiàn)
[Abstract]:With the development of television technology, 3D video display technology has gradually come into people's view, people can watch stereoscopic images on the screen, and get rapid development in military, medical, education and other fields. One way to get 3D video is to convert 2D video to 3D video directly through 2D to 3D video technology. This method is widely studied because of its low cost, short period and abundant 2D video resources. In 2D to 3D video system, the key is depth map extraction. This paper mainly studies the method of depth map extraction based on motion detection, which is a kind of depth assignment method which regards moving target as foreground. This hypothetical method is consistent with the habit of viewing and has high efficiency. The result of moving target detection is the core of this method. However, most of the results of motion detection are greatly affected by the environment. If there is a dynamic background in the scene, there will be a large number of false detection points, and if the moving object is moving too fast, it will produce a ghost image. The shaded light of moving object will also detect the shadow area as moving target. In view of the above possible problems, this paper proposes an accurate and effective motion detection algorithm. A background model based on temporal and spatial information is proposed to solve the problem of dynamic background in ghosts and scenes. This kind of background model can effectively remove most of the false detection points. The method of reducing missed detection points is to combine a "or" type of three frame difference method in the process of scene segmentation, and to combine the segmentation result with the significant detection result, which can further remove the false detection points. Finally, shadow area is removed based on HSV color space. The software layer of the algorithm is verified on the platform of Matlab and Opencv. The experimental results show that the algorithm can get correct motion detection results, and the quantization index f-measure can reach more than 0.80.
【學位授予單位】:合肥工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TN948.6;TP391.41
【參考文獻】
相關期刊論文 前10條
1 龐碩;張遠;曲熠;;3D電視系統(tǒng)的構(gòu)成及發(fā)展[J];電視技術;2013年02期
2 馬建設;夏飛鵬;蘇萍;潘龍法;;數(shù)字全息三維顯示關鍵技術與系統(tǒng)綜述[J];光學精密工程;2012年05期
3 洪艷;陳佩怡;;3D電影的現(xiàn)狀與問題研究[J];重慶郵電大學學報(社會科學版);2012年02期
4 郝毫剛;陳家琪;;基于五幀差分和背景差分的運動目標檢測算法[J];計算機工程;2012年04期
5 王瓊?cè)A;王愛紅;梁棟;鄧歡;;裸視3D顯示技術概述[J];真空電子技術;2011年05期
6 李樂;張茂軍;熊志輝;徐瑋;;基于內(nèi)容理解的單幅靜態(tài)街景圖像深度估計[J];機器人;2011年02期
7 Abbas KOOCHARI;Mohsen SORYANI;;Exemplar-based video inpainting with large patches[J];Journal of Zhejiang University-Science C(Computer & Electronics);2010年04期
8 張凱舟;劉鵬;姚慶棟;;基于自適應搜索模板的快速運動估計算法[J];中國圖象圖形學報;2009年11期
9 鞠芹;安平;張倩;張兆揚;;高質(zhì)量的虛擬視點圖像的繪制方法[J];電視技術;2009年09期
10 楊鈾;郁梅;蔣剛毅;;交互式三維視頻系統(tǒng)研究進展[J];計算機輔助設計與圖形學學報;2009年05期
相關博士學位論文 前1條
1 李樂;面向3DTV應用的視頻2D轉(zhuǎn)3D技術研究[D];國防科學技術大學;2012年
相關碩士學位論文 前6條
1 趙興朋;視頻圖像2D轉(zhuǎn)3D算法研究及硬件實現(xiàn)[D];中國海洋大學;2012年
2 關珊珊;基于FPGA的圖像顯示技術研究[D];南京航空航天大學;2012年
3 徐萍;基于深度圖像繪制的二維轉(zhuǎn)三維視頻關鍵技術研究[D];南京郵電大學;2011年
4 辛海濤;基于運動目標檢測的行人計數(shù)方法[D];河北工業(yè)大學;2011年
5 程鴻亮;基于FPGA的實時圖像邊緣檢測系統(tǒng)的研究[D];長安大學;2009年
6 杜晶晶;智能視頻監(jiān)控中運動目標檢測與跟蹤算法研究[D];西南交通大學;2009年
,本文編號:2180425
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2180425.html