基于總體經(jīng)驗(yàn)?zāi)B(tài)分解的多類特征的運(yùn)動(dòng)想象腦電識(shí)別方法研究
發(fā)布時(shí)間:2018-08-06 21:29
【摘要】:人的腦電信號(hào)(Electroencephalogram,EEG)復(fù)雜且具有非線性及非平穩(wěn)性的特點(diǎn)使其不易分析處理,其識(shí)別效果也依賴于數(shù)據(jù)集的不同,而表現(xiàn)不穩(wěn)定.本文中應(yīng)用的總體經(jīng)驗(yàn)?zāi)B(tài)分解(Ensemble empirical mode decomposition,EEMD)是一種具有強(qiáng)自適應(yīng)性的信號(hào)處理方法,其在時(shí)頻域展現(xiàn)的良好分辨率特別適合腦電識(shí)別任務(wù)處理.本文提出利用EEMD分解后得到的較具影響能力的固有模態(tài)函數(shù)(Intrinsic mode functions,IMFs),利用希爾伯特變換提取邊際譜(Marginal spectrum,MS)及瞬時(shí)能譜(Instantaneous energy spectrum,IES)時(shí)頻特征,同時(shí)通過加窗的方法提取非線性動(dòng)力學(xué)特征近似熵特征,利用線性判別分類器(Linear discriminant analysis,LDA)作為分類器,實(shí)驗(yàn)結(jié)果得出,對(duì)于被試S2和被試S3可達(dá)到識(shí)別率分別為79.60%和87.77%,實(shí)驗(yàn)中9名被試的平均識(shí)別率為82.74%,得到平均識(shí)別率也高于近期使用相同數(shù)據(jù)集文獻(xiàn)的其他方法.
[Abstract]:The complex, nonlinear and non-stationary characteristics of electroencephalogram (EEG) make it difficult to analyze and process, and its recognition effect depends on the difference of data set, and its performance is unstable. The general empirical mode decomposition (Ensemble empirical mode) method used in this paper is a strong adaptive signal processing method, and its good resolution in time-frequency domain is especially suitable for EEG recognition task processing. In this paper, the time-frequency features of Marginal spectra MS and instantaneous energy spectrum (Instantaneous energy spectra are extracted by using the (Intrinsic mode functionsimfs, which are obtained by EEMD decomposition, and by Hilbert transform. At the same time, the approximate entropy feature of nonlinear dynamics is extracted by adding windows, and the linear discriminant classifier (Linear discriminant analysisLDA is used as the classifier. The experimental results show that, The recognition rates of S2 and S3 were 79.60% and 87.77%, respectively. The average recognition rate of 9 subjects was 82.74, and the average recognition rate was higher than that of other methods using the same data set recently.
【作者單位】: 吉林大學(xué)通信工程學(xué)院分布式智能信息處理實(shí)驗(yàn)室;
【基金】:吉林省科技發(fā)展計(jì)劃自然基金(20150101191JC) 吉林大學(xué)研究生創(chuàng)新基金(2016092)資助~~
【分類號(hào)】:R338
本文編號(hào):2169045
[Abstract]:The complex, nonlinear and non-stationary characteristics of electroencephalogram (EEG) make it difficult to analyze and process, and its recognition effect depends on the difference of data set, and its performance is unstable. The general empirical mode decomposition (Ensemble empirical mode) method used in this paper is a strong adaptive signal processing method, and its good resolution in time-frequency domain is especially suitable for EEG recognition task processing. In this paper, the time-frequency features of Marginal spectra MS and instantaneous energy spectrum (Instantaneous energy spectra are extracted by using the (Intrinsic mode functionsimfs, which are obtained by EEMD decomposition, and by Hilbert transform. At the same time, the approximate entropy feature of nonlinear dynamics is extracted by adding windows, and the linear discriminant classifier (Linear discriminant analysisLDA is used as the classifier. The experimental results show that, The recognition rates of S2 and S3 were 79.60% and 87.77%, respectively. The average recognition rate of 9 subjects was 82.74, and the average recognition rate was higher than that of other methods using the same data set recently.
【作者單位】: 吉林大學(xué)通信工程學(xué)院分布式智能信息處理實(shí)驗(yàn)室;
【基金】:吉林省科技發(fā)展計(jì)劃自然基金(20150101191JC) 吉林大學(xué)研究生創(chuàng)新基金(2016092)資助~~
【分類號(hào)】:R338
【相似文獻(xiàn)】
相關(guān)期刊論文 前1條
1 劉燕;穆振東;;運(yùn)動(dòng)想象機(jī)制研究[J];科技廣場(chǎng);2011年01期
相關(guān)碩士學(xué)位論文 前8條
1 王超;基于OpenVIBE的高性能運(yùn)動(dòng)想象在線腦—機(jī)接口系統(tǒng)研究[D];華南理工大學(xué);2016年
2 馬秀秀;基于運(yùn)動(dòng)想象的異步腦—機(jī)接口算法研究[D];哈爾濱工業(yè)大學(xué);2016年
3 王延達(dá);基于運(yùn)動(dòng)想象的腦電信號(hào)識(shí)別算法研究[D];南京航空航天大學(xué);2016年
4 張f歡;運(yùn)動(dòng)想象腦電信號(hào)的分析研究[D];上海交通大學(xué);2015年
5 姚家揚(yáng);運(yùn)動(dòng)想象腦電處理及其模式識(shí)別方法研究[D];杭州電子科技大學(xué);2016年
6 蔡慧;BCI中的運(yùn)動(dòng)想象腦電信號(hào)處理方法研究[D];杭州電子科技大學(xué);2016年
7 張煥;四類運(yùn)動(dòng)想象任務(wù)的腦電信號(hào)識(shí)別算法研究[D];山西大學(xué);2016年
8 易振華;運(yùn)動(dòng)想象腦電信號(hào)的分析與處理方法研究[D];北京交通大學(xué);2008年
,本文編號(hào):2169045
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2169045.html
最近更新
教材專著