基于FQLC的異構(gòu)密集蜂窩網(wǎng)絡(luò)容量與覆蓋聯(lián)合優(yōu)化
發(fā)布時(shí)間:2018-08-02 11:56
【摘要】:針對異構(gòu)蜂窩網(wǎng)絡(luò)下微蜂窩密集部署的不規(guī)則性,提出了一種基于強(qiáng)化學(xué)習(xí)的自優(yōu)化控制系統(tǒng),通過微蜂窩功率控制解決微蜂窩密集部署下的網(wǎng)絡(luò)的容量與覆蓋問題。將模糊邏輯與Q學(xué)習(xí)算法相結(jié)合,綜合考慮網(wǎng)絡(luò)的平均用戶性能、邊緣用戶性能和網(wǎng)絡(luò)環(huán)境相互影響來設(shè)計(jì)模糊邏輯與Q學(xué)習(xí)算法的聯(lián)合瞬時(shí)回報(bào)獎(jiǎng)懲值,進(jìn)行網(wǎng)絡(luò)容量與覆蓋的聯(lián)合自優(yōu)化。仿真結(jié)果表明,該方法能實(shí)現(xiàn)密集化微蜂窩部署下的容量與覆蓋自優(yōu)化,有效提高系統(tǒng)平均用戶吞吐量和邊緣用戶吞吐量。
[Abstract]:Aiming at the irregularity of microcellular dense deployment in heterogeneous cellular networks, a self-optimization control system based on reinforcement learning is proposed, which solves the network capacity and coverage problems under microcellular dense deployment through microcellular power control. Combining fuzzy logic with Q learning algorithm, considering the average user performance of network, edge user performance and network environment interaction, the combined instantaneous reward and punishment value of fuzzy logic and Q learning algorithm is designed. The joint self-optimization of network capacity and coverage is carried out. Simulation results show that this method can achieve capacity and coverage self-optimization under intensive microcellular deployment, and effectively improve the average user throughput and edge user throughput of the system.
【作者單位】: 重慶郵電大學(xué)移動(dòng)通信技術(shù)重點(diǎn)實(shí)驗(yàn)室;
【基金】:國家“863”計(jì)劃資助項(xiàng)目(2014AA0101A701) 國家科技重大專項(xiàng)資助項(xiàng)目(2014ZX03003010-004) 國家自然科學(xué)基金資助項(xiàng)目(6157103)
【分類號】:TN929.5
[Abstract]:Aiming at the irregularity of microcellular dense deployment in heterogeneous cellular networks, a self-optimization control system based on reinforcement learning is proposed, which solves the network capacity and coverage problems under microcellular dense deployment through microcellular power control. Combining fuzzy logic with Q learning algorithm, considering the average user performance of network, edge user performance and network environment interaction, the combined instantaneous reward and punishment value of fuzzy logic and Q learning algorithm is designed. The joint self-optimization of network capacity and coverage is carried out. Simulation results show that this method can achieve capacity and coverage self-optimization under intensive microcellular deployment, and effectively improve the average user throughput and edge user throughput of the system.
【作者單位】: 重慶郵電大學(xué)移動(dòng)通信技術(shù)重點(diǎn)實(shí)驗(yàn)室;
【基金】:國家“863”計(jì)劃資助項(xiàng)目(2014AA0101A701) 國家科技重大專項(xiàng)資助項(xiàng)目(2014ZX03003010-004) 國家自然科學(xué)基金資助項(xiàng)目(6157103)
【分類號】:TN929.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前2條
1 HAO Peng;YAN Xiao;Yu-Ngok Ruyue;YUAN Yifei;;Ultra Dense Network: Challenges, Enabling Technologies and New Trends[J];中國通信;2016年02期
2 豐雷;李文t,
本文編號:2159354
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2159354.html
最近更新
教材專著