自適應(yīng)多尺度分塊壓縮感知算法
[Abstract]:Aim Multi-scale block compression perceptual reconstruction algorithm based on wavelet domain neglects the function of high frequency signal in the reconstruction process and loses a lot of edge and detail information. To solve the above problems, an adaptive multi-scale block compression sensing algorithm is proposed, which not only makes rational use of the low frequency information but also makes full use of the high frequency information of the image, so as to ensure the improvement of the image reconstruction quality with the increase of the complexity of the image details. Methods three layers of wavelet transform were carried out, one low frequency signal and nine high frequency signals were obtained. After inverse wavelet transform, they were divided into blocks with the same size and no overlap. The low-frequency part is processed by 2-D adjacent block edge adaptive weighted filtering, the high-frequency part is sampled by texture adaptive block sampling, and the smooth projection Landweber (SPL) algorithm is used to reconstruct it. Results compared with the existing block compression sensing algorithm, the edge and direction-based compression sensing algorithm and the texture and direction-based block compression sensing algorithm, the performance of this algorithm is improved at different sampling rates. The high frequency signal representing the detail information is fully reconstructed, and the reconstructed image obtained by the improved algorithm has higher resolution. Especially for the image with rich details, it has a high peak SNR and 2-dimensional edge adaptive weighted filtering to remove the block effect effectively, and the reconstruction time is reduced by 0.3 s on average. Conclusion the high-frequency component of three-layer wavelet transform is taken as texture part, and the contour and edge of image are reconstructed by adaptive multi-scale block, and the low-frequency component is regarded as a flat part directly, and the image details are reconstructed by adaptive weighted filter of adjacent block edge. It not only makes full use of the high and low frequency information of the image, but also reduces the process of flat block detection, which effectively shortens the reconstruction time. Experimental results show that the proposed algorithm has better image quality, especially for complex images, the block effect is eliminated, and the edge and texture details are clear. So it is mainly applied to face image, building image and remote sensing image with complicated texture details.
【作者單位】: 中國礦業(yè)大學(xué)信息與控制工程學(xué)院;
【基金】:國家自然科學(xué)基金項目(U1261105)~~
【分類號】:TN911.73
【相似文獻】
相關(guān)期刊論文 前10條
1 李泉永;;一個使用較少外存的分塊直接解法及其在天線結(jié)構(gòu)分析中的一個應(yīng)用[J];桂林電子工業(yè)學(xué)院學(xué)報;1984年01期
2 李泉永;;分塊解法在天線背架結(jié)構(gòu)計算中的一個應(yīng)用[J];桂林電子工業(yè)學(xué)院學(xué)報;1982年01期
3 蔡德鈞 ,王宏遠(yuǎn);一種自適應(yīng)分塊截斷編碼[J];華中工學(xué)院學(xué)報;1985年04期
4 楊愛萍;張金霞;鐘騰飛;卜令勇;;分塊OSTM測量矩陣構(gòu)造及自適應(yīng)壓縮感知算法[J];天津大學(xué)學(xué)報(自然科學(xué)與工程技術(shù)版);2014年06期
5 俞培蓓;劉啟茂;朱光喜;朱耀庭;;關(guān)于分塊截斷編碼的實驗研究[J];中國空間科學(xué)技術(shù);1982年06期
6 應(yīng)波;丁曉偉;;分塊自適應(yīng)量化算法的仿真和實現(xiàn)[J];電訊技術(shù);2008年06期
7 張劍云;冉金和;毛云祥;;機載雙站SAR成像區(qū)分塊分析[J];信號處理;2014年08期
8 袁莉娜;洪文;;一種改進的分塊自適應(yīng)壓縮算法[J];科學(xué)技術(shù)與工程;2011年21期
9 鄢仁祥,胡玉琦,王洪君,高遠(yuǎn);一種新的視頻代理方案──分塊代理[J];東北大學(xué)學(xué)報;2002年08期
10 周秦英,葛暉,王新梅,許衛(wèi)東;基于分塊數(shù)據(jù)傳輸?shù)男滦虷ARQ系統(tǒng)[J];西安電子科技大學(xué)學(xué)報;2005年05期
相關(guān)博士學(xué)位論文 前1條
1 鄒健;分塊稀疏表示的理論及算法研究[D];華南理工大學(xué);2012年
相關(guān)碩士學(xué)位論文 前2條
1 榮雁霞;基于分塊壓縮感知的圖像重構(gòu)方法研究[D];南京郵電大學(xué);2015年
2 賈崇偉;純整數(shù)運算分塊并行Turbo編譯碼器的FPGA設(shè)計[D];西南交通大學(xué);2017年
,本文編號:2155832
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2155832.html