自適應(yīng)波束形成算法性能優(yōu)化研究
發(fā)布時間:2018-07-27 18:52
【摘要】:自適應(yīng)波束形成算法是信號源定位的關(guān)鍵技術(shù),影響自適應(yīng)波束形成算法性能的主要因素是算法的收斂速度和穩(wěn)定性,良好的自適應(yīng)算法收斂速度快、計算復(fù)雜度低和有穩(wěn)定魯棒性。針對傳統(tǒng)自適應(yīng)波束形成算法收斂速度慢和抗干擾性能差的問題,通過理論推導(dǎo)和仿真對比分析最小均方算法(LMS)和遞推最小二乘算法(RLS)的性能,并提出一種改進的RLS算法。通過施加二次型約束,對期望信號波達方向附近范圍內(nèi)的方向向量的誤差值進行約束,來提高算法的魯棒性,并在約束條件下對權(quán)重向量進行優(yōu)化求解,經(jīng)Matlab仿真分析,結(jié)果表明改進算法有更快的收斂速度和更好抗干擾性能。
[Abstract]:Adaptive beamforming algorithm is the key technology of signal source location. The main factor affecting the performance of adaptive beamforming algorithm is the convergence speed and stability of the algorithm. Low computational complexity and stable robustness. Aiming at the problems of slow convergence speed and poor anti-jamming performance of traditional adaptive beamforming algorithm, the performance of minimum mean square algorithm (LMS) and recursive least square algorithm (RLS) are analyzed by theoretical derivation and simulation, and an improved RLS algorithm is proposed. In order to improve the robustness of the algorithm, the quadratic constraint is applied to constrain the error of the direction vector in the range of the direction of arrival of the desired signal, and the weight vector is optimized under the constraint conditions, and analyzed by Matlab simulation. The results show that the improved algorithm has faster convergence speed and better anti-jamming performance.
【作者單位】: 上海工程技術(shù)大學(xué)汽車工程學(xué)院;
【基金】:國家自然科學(xué)基金項目(51675324,51175320) 上海市自然科學(xué)基金項目(14ZR1418600)
【分類號】:TN911.7
本文編號:2148823
[Abstract]:Adaptive beamforming algorithm is the key technology of signal source location. The main factor affecting the performance of adaptive beamforming algorithm is the convergence speed and stability of the algorithm. Low computational complexity and stable robustness. Aiming at the problems of slow convergence speed and poor anti-jamming performance of traditional adaptive beamforming algorithm, the performance of minimum mean square algorithm (LMS) and recursive least square algorithm (RLS) are analyzed by theoretical derivation and simulation, and an improved RLS algorithm is proposed. In order to improve the robustness of the algorithm, the quadratic constraint is applied to constrain the error of the direction vector in the range of the direction of arrival of the desired signal, and the weight vector is optimized under the constraint conditions, and analyzed by Matlab simulation. The results show that the improved algorithm has faster convergence speed and better anti-jamming performance.
【作者單位】: 上海工程技術(shù)大學(xué)汽車工程學(xué)院;
【基金】:國家自然科學(xué)基金項目(51675324,51175320) 上海市自然科學(xué)基金項目(14ZR1418600)
【分類號】:TN911.7
【相似文獻】
相關(guān)期刊論文 前5條
1 羅章凱;王華力;謝青;孔磊;王慶國;;最小均方類自適應(yīng)波束形成算法的分析與比較[J];軍事通信技術(shù);2013年04期
2 任超;王永慶;;基于兩步最小均方的自適應(yīng)方向圖控制算法[J];北京理工大學(xué)學(xué)報;2010年09期
3 谷源濤,唐昆,崔慧娟,杜文;最優(yōu)變步長最小均方模型和實現(xiàn)算法[J];清華大學(xué)學(xué)報(自然科學(xué)版);2003年01期
4 劉文紅;汪源源;王斌;;α穩(wěn)定噪聲下最小均方Sigmoid誤差自適應(yīng)時間延遲估計[J];大連海事大學(xué)學(xué)報;2009年02期
5 沈潔元;王希;羅漢文;葛建華;;應(yīng)用于MC-CDMA系統(tǒng)的塊最小均方自適應(yīng)合并技術(shù)[J];電訊技術(shù);2006年04期
,本文編號:2148823
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2148823.html
最近更新
教材專著