基于高斯過程回歸的鏈路質量預測方法
[Abstract]:Wireless sensor network (WSN) is a self-organized network which is composed of sensor nodes deployed in monitoring area and transmits data in multi-hop mode. It has been widely used in many fields. The wireless communication of sensor nodes is based on low power consumption, and the environment is harsh and complex, which leads to the instability of communication links between the nodes. If we can perceive link quality information in time and provide routing reference for forwarding data, we can effectively reduce the number of data retransmissions and improve the throughput of network data. Therefore, effective link quality prediction method is very important to improve the success rate of data transmission and prolong the network lifetime. In this paper, the characteristics of wireless link and the existing link quality prediction methods are introduced, and the definition and correlation of link quality parameters are analyzed. Based on this analysis, a link quality prediction model based on Gao Si process regression (Gaussian Process) is proposed. The physical layer parameters are sensitive in real time, and the direct measurement of packet reception rate requires more energy consumption. Therefore, a nonlinear mapping relationship between physical layer parameters and packet reception rate is constructed in this paper. Because of the information redundancy among the link quality parameters, the training speed of the model will be reduced. Firstly, the grey correlation degree between link quality parameters is analyzed by using the grey correlation analysis method, and the effective influence factors are selected. According to the characteristics of link quality time series, a link quality prediction model is constructed by selecting appropriate covariance function. Wireless link communication is easily affected and interfered by the space environment, geographical location and wireless signal. The research object of this paper is wireless sensor network with static nodes. Four scene deployment experiments are selected, including university campus forest, teaching building laboratory, library square and highway, and the experimental data between multiple pairs of nodes in different directions and distances are collected. In this paper, the link fluctuation between each node pair in different scenarios and the grey correlation between different link quality parameters are analyzed, and the input parameters of the prediction model are determined. In this paper, two kinds of links are selected for experimental analysis and model verification. The experimental results show that the data samples after dimensionality reduction still cover the link quality information and have no effect on the prediction accuracy. The prediction performance of Gao Si process regression model based on combined covariance function is better than that based on single covariance function, and the proposed model has better prediction accuracy than the model based on support vector regression machine.
【學位授予單位】:南昌航空大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP212.9;TN929.5
【相似文獻】
相關期刊論文 前10條
1 黃庭培;李棟;張招亮;崔莉;;一種突發(fā)性鏈路感知的自適應鏈路質量估計方法[J];計算機研究與發(fā)展;2010年S2期
2 黃庭培;李棟;張招亮;崔莉;;突發(fā)性鏈路感知的自適應鏈路質量估計方法[J];通信學報;2012年06期
3 徐佑軍,譚敦茂,朱建武,曹文熙;藍牙無線鏈路質量的分析、測試與改善[J];計算機工程與應用;2004年12期
4 王廣杰;曾鵬;肖金超;;面向工業(yè)無線傳感器網(wǎng)絡的鏈路質量實時評估算法[J];小型微型計算機系統(tǒng);2012年05期
5 郭志強;王沁;萬亞東;李默涵;;基于綜合性評估的無線鏈路質量分類預測機制[J];計算機研究與發(fā)展;2013年06期
6 陸飛;樂曉波;向峗松;;基于無線網(wǎng)格網(wǎng)的鏈路質量測量方案與路由尺度性能研究[J];計算機應用;2007年11期
7 李慕峰;田宇;徐鴻飛;易平;;基于鏈路質量的應急無線傳感網(wǎng)絡路由算法研究[J];信息網(wǎng)絡安全;2014年05期
8 廖欣;;一種鏈路質量知曉的多跳無線網(wǎng)絡路由度量[J];懷化學院學報;2014年05期
9 蔣錕;汪蕓;;灰洞檢測:基于鏈路質量估計的看門狗算法[J];計算機與現(xiàn)代化;2014年02期
10 戴靠柱;王潛平;;無線傳感網(wǎng)絡中基于鏈路質量的地理路由[J];計算機工程與設計;2011年03期
相關會議論文 前2條
1 胡丁丁;;Link Quality Control功能分析與優(yōu)化[A];2012全國無線及移動通信學術大會論文集(下)[C];2012年
2 李婷婷;毛玉明;于秦;;Ad Hoc網(wǎng)絡無線鏈路質量評估算法研究[A];四川省通信學會2007年學術年會論文集[C];2007年
相關碩士學位論文 前10條
1 周安;無線傳感器網(wǎng)絡鏈路質量估計方法研究及應用[D];南京信息工程大學;2015年
2 張海洋;WSN中障礙物感知的鏈路質量估算方法研究[D];浙江工業(yè)大學;2015年
3 胡剛;無線傳感網(wǎng)絡鏈路質量評估參數(shù)優(yōu)選模型研究[D];南昌航空大學;2015年
4 湯津;基于模糊支持向量回歸機的WSN鏈路質量預測模型[D];南昌航空大學;2015年
5 劉松;基于貝葉斯網(wǎng)絡的鏈路質量預測機制研究[D];南昌航空大學;2016年
6 谷小樂;基于云模型的無線傳感網(wǎng)絡鏈路質量預測方法[D];南昌航空大學;2016年
7 趙婷;水下傳感器網(wǎng)絡基于能量和鏈路質量的路徑選擇研究[D];天津大學;2014年
8 尚亞青;基于高斯過程回歸的鏈路質量預測方法[D];南昌航空大學;2017年
9 李越;基于深度信念網(wǎng)絡的WSNs鏈路質量預測機制研究[D];南昌航空大學;2017年
10 付逸斐;家庭無線場景下鏈路質量評價與中繼機會判斷[D];華中科技大學;2011年
,本文編號:2147172
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2147172.html