天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 信息工程論文 >

寬帶雙信道射頻前端的設(shè)計(jì)與實(shí)現(xiàn)

發(fā)布時(shí)間:2018-07-21 19:48
【摘要】:隨著無(wú)線通信的廣泛應(yīng)用,全球范圍內(nèi)對(duì)無(wú)線電頻譜資源的需求都呈現(xiàn)增長(zhǎng)趨勢(shì)。為了更好的使用和管理無(wú)線電系統(tǒng),我們需要對(duì)無(wú)線電信號(hào)的頻率、功率等特性進(jìn)行檢測(cè),對(duì)信號(hào)攜帶信息進(jìn)行分析并且識(shí)別信號(hào)的來(lái)波方向。90年代初,美國(guó)最先提出軟件定義無(wú)線電(SDR)的概念,當(dāng)前普遍認(rèn)為SDR覆蓋的頻帶為0.8GHz 6GHz。本文針對(duì)SDR定義的頻帶范圍設(shè)計(jì)了可用于監(jiān)測(cè)接收系統(tǒng)的雙信道射頻前端電路。該射頻前端的接收頻率范圍為30MHz 6GHz,系統(tǒng)采用超外差接收機(jī)結(jié)構(gòu),總共使用三級(jí)變頻單元,將接收頻率范圍內(nèi)的射頻(RF)信號(hào)下變頻到中心頻率為160MHz的中頻(IF)信號(hào),信道帶寬為40MHz。本文首先調(diào)研了國(guó)內(nèi)外主要的監(jiān)測(cè)設(shè)備廠商現(xiàn)有產(chǎn)品的性能,提出了本監(jiān)測(cè)設(shè)備中射頻前端的指標(biāo)要求。通過(guò)常用接收機(jī)結(jié)構(gòu)性能的對(duì)比,確定采用超外差的接收方案。根據(jù)當(dāng)前模數(shù)轉(zhuǎn)換器、頻率源等模塊的限制因素,確定了射頻前端三級(jí)變頻的總體設(shè)計(jì)方案。其次,根據(jù)總體設(shè)計(jì)方案,分析每一級(jí)變頻電路中的鏡像頻率,雜散響應(yīng)和互調(diào)干擾等因素,確定該級(jí)變頻電路濾波器設(shè)計(jì)要求和其他器件的選型方案。在確定射頻電路的鏈路設(shè)計(jì)方案后,對(duì)射頻前端的增益,噪聲系數(shù)等系統(tǒng)指標(biāo)進(jìn)行仿真驗(yàn)證。完成仿真驗(yàn)證之后,進(jìn)行各個(gè)模塊電路的設(shè)計(jì),主要完成了預(yù)選濾波器和中頻濾波器的分析和設(shè)計(jì),以及混頻電路設(shè)計(jì)。本文針對(duì)第一混頻電路高中頻方案中本振泄露的問(wèn)題,提出了一種本振泄露信號(hào)抑制電路的設(shè)計(jì)方案,解決了高中頻方案設(shè)計(jì)中濾波器對(duì)本振泄露信號(hào)抑制不足的問(wèn)題。最后,對(duì)雙信道射頻前端電路進(jìn)行功能調(diào)試,并且對(duì)增益、噪聲系數(shù)、和系統(tǒng)線性度等指標(biāo)進(jìn)行測(cè)試。根據(jù)測(cè)試的結(jié)果分析存在的問(wèn)題,提出改進(jìn)的方案,電路功能基本滿足預(yù)期的設(shè)計(jì)要求。
[Abstract]:With the wide application of wireless communication, the global demand for radio spectrum resources is increasing. In order to better use and manage the radio system, we need to detect the frequency and power characteristics of the radio signal, analyze the information carried by the signal and identify the direction of the signal in the early 1990s. The concept of software defined radio (SDR) was first put forward in the United States, and it is generally considered that the frequency band covered by SDR is 0.8GHz / 6GHz. In this paper, a dual channel RF front-end circuit is designed to monitor the receiving system for the band range defined by SDR. The receiving frequency range of the RF front-end is 30MHz and 6GHz. The system adopts the structure of superheterodyne receiver. In total, the radio frequency (RF) signal in the frequency range is converted down to the if signal with a central frequency of 160 MHz, and the channel bandwidth is 40 MHz. This paper first investigates the performance of the existing products of the main monitoring equipment manufacturers at home and abroad, and puts forward the requirements of the RF front end in the monitoring equipment. By comparing the structure and performance of common receivers, the receiving scheme of superheterodyne is determined. According to the limiting factors of current analog-to-digital converter and frequency source, the overall design scheme of three-stage frequency conversion for RF front-end is determined. Secondly, according to the overall design scheme, the image frequency, spurious response and intermodulation interference of each stage frequency conversion circuit are analyzed, and the design requirements of the filter and the selection scheme of other devices are determined. After the link design scheme of RF circuit is determined, the gain and noise coefficient of RF front-end are simulated and verified. After the simulation and verification, the design of each module circuit is carried out, mainly the analysis and design of pre-selected filter and if filter, as well as the design of mixing circuit. In order to solve the problem of local oscillator leakage in the high frequency scheme of the first mixed-frequency circuit, this paper presents a design scheme of the local oscillator leakage signal suppression circuit, which solves the problem that the filter can not suppress the local oscillator leakage signal in the design of the high-frequency scheme. Finally, the dual channel RF front-end circuit is debugged, and the gain, noise coefficient and linearity of the system are tested. According to the test results, the existing problems are analyzed, and the improved scheme is put forward. The circuit functions basically meet the expected design requirements.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TN98

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 楊建飛;;軟件無(wú)線電接收機(jī)射頻前端設(shè)計(jì)與仿真[J];電子測(cè)試;2015年15期

2 朱齊媛;陳新原;;基于ADS的濾波器類型選擇對(duì)濾波性能的影響分析[J];電子設(shè)計(jì)工程;2015年01期

3 譚慶艷;莊劍;;無(wú)線通信系統(tǒng)中三階交調(diào)的研究[J];電子技術(shù);2014年12期

4 俞璐;劉凱;張衛(wèi)紅;;一種寬帶通信偵察接收機(jī)射頻前端設(shè)計(jì)[J];艦船電子對(duì)抗;2014年05期

5 馬慧瑾;劉忠健;王彤威;楊召甫;潘國(guó)慶;;一種可調(diào)諧的窄帶圓桿梳狀腔體濾波器的設(shè)計(jì)[J];計(jì)算機(jī)測(cè)量與控制;2013年11期

6 朱峰;李孝輝;王國(guó)永;;濾波器群時(shí)延分析及其對(duì)導(dǎo)航信號(hào)的影響[J];電子測(cè)量技術(shù);2013年05期

7 龔仕仙;魏璽章;黎湘;;寬帶數(shù)字信道化接收機(jī)綜述[J];電子學(xué)報(bào);2013年05期

8 吉?jiǎng)?;相控陣?yán)走_(dá)接收系統(tǒng)噪聲系數(shù)分析[J];現(xiàn)代電子技術(shù);2013年01期

9 賈鋒;楊瑞民;;射頻接收前端的ADS設(shè)計(jì)與仿真[J];計(jì)算機(jī)工程與應(yīng)用;2014年13期

10 齊青茂;王巖建;張華沖;;中頻采樣全數(shù)字接收機(jī)的設(shè)計(jì)與實(shí)現(xiàn)[J];無(wú)線電通信技術(shù);2012年04期

相關(guān)碩士學(xué)位論文 前2條

1 趙雪嬌;無(wú)線電監(jiān)測(cè)與測(cè)向定位技術(shù)研究[D];電子科技大學(xué);2014年

2 黃磊;軟件無(wú)線電射頻前端研究[D];電子科技大學(xué);2013年



本文編號(hào):2136669

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2136669.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶06170***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com