基于非特定人的語(yǔ)音識(shí)別前端處理技術(shù)的研究
[Abstract]:In recent years, with the continuous development of artificial intelligence, speech recognition technology has gradually moved from the research stage to the practical application stage, is a potential research value of the technology. However, in the research of speech recognition system, how to optimize the system performance is still the focus of discussion. In this paper, the basic structure and principle of the whole system are introduced in detail, some key technologies of speech recognition system are deeply studied, and corresponding improved algorithms are put forward. The general flow of speech recognition includes speech endpoint detection, feature parameter extraction, speech model training and recognition algorithm. Firstly, some key technologies of speech recognition system, including speech signal preprocessing, endpoint detection and feature extraction algorithm, are studied in this paper. In the environment of low SNR noise, two key techniques of signal endpoint detection and pitch period extraction are proposed. They are: an endpoint detection algorithm based on empirical mode decomposition (EMD) and improved wavelet entropy and an algorithm of pitch period extraction based on wavelet packet transform weighted autocorrelation and compared with the original algorithm. Secondly, the Mel cepstrum coefficient is selected as the feature parameter, and the extraction process of MFCC feature parameter is studied carefully, and a feature parameter -WPTMFCC for anti-noise speech based on wavelet packet transform is proposed. The experimental results show that the new feature parameters can improve the robustness of the system, and the recognition rate in different SNR noise environments is higher than that of the traditional LPCC feature parameters and MFCC feature parameters. In this paper, a recognition system based on Hidden Markov Model (hmm) is built on MATLAB platform. The simulation results show that the improved endpoint detection technique and the characteristic parameters of WPTMFCC can improve the recognition rate of the system. Finally, the GUI interface of the recognition system is designed, through which the speech in the speech database can be recognized and demonstrated in real time.
【學(xué)位授予單位】:安徽工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN912.34
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張思陽(yáng);徐敏強(qiáng);王日新;高晶波;;EMD與樣本熵在往復(fù)壓縮機(jī)氣閥故障診斷中的應(yīng)用[J];哈爾濱工程大學(xué)學(xué)報(bào);2014年06期
2 王琳;李成榮;;一種基于自適應(yīng)譜熵的端點(diǎn)檢測(cè)改進(jìn)方法[J];計(jì)算機(jī)仿真;2010年12期
3 趙毅;尹雪飛;陳克安;;一種新的基于倒譜的共振峰頻率檢測(cè)算法[J];應(yīng)用聲學(xué);2010年06期
4 鄭繼明;王勁松;;語(yǔ)音基音周期檢測(cè)方法[J];計(jì)算機(jī)工程;2010年10期
5 李宏梅;伍小芹;;有關(guān)語(yǔ)音識(shí)別技術(shù)的研究[J];現(xiàn)代電子技術(shù);2010年08期
6 陳磊;吳小培;呂釗;;基于線性預(yù)測(cè)與歸一化互相關(guān)的基音檢測(cè)[J];電子測(cè)量技術(shù);2009年10期
7 張軍;李學(xué)斌;;一種基于DTW的孤立詞語(yǔ)音識(shí)別算法[J];計(jì)算機(jī)仿真;2009年10期
8 劉建新;曹榮;趙鶴鳴;;一種LPC改進(jìn)算法在提取耳語(yǔ)音共振峰中的應(yīng)用[J];西華大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年03期
9 胡瑛;陳寧;;基于小波變換的清濁音分類及基音周期檢測(cè)算法[J];電子與信息學(xué)報(bào);2008年02期
10 張玲華;鄭寶玉;楊震;;基于LPC分析的語(yǔ)音特征參數(shù)研究及其在說(shuō)話人識(shí)別中的應(yīng)用[J];南京郵電學(xué)院學(xué)報(bào);2005年06期
相關(guān)碩士學(xué)位論文 前10條
1 廖振東;基于DTW的孤立詞語(yǔ)音識(shí)別系統(tǒng)研究[D];云南大學(xué);2015年
2 王一蒙;語(yǔ)音識(shí)別關(guān)鍵技術(shù)研究[D];電子科技大學(xué);2015年
3 劉方洲;語(yǔ)音識(shí)別關(guān)鍵技術(shù)及其改進(jìn)算法研究[D];長(zhǎng)安大學(xué);2014年
4 李W毞,
本文編號(hào):2128734
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2128734.html