基于基頻的朝鮮語方言辨識方法的研究
發(fā)布時間:2018-07-16 18:35
【摘要】:該文提出了一種基于基音頻率特征的中國朝鮮族語言、韓國朝鮮語和朝鮮朝鮮語方言的自動辨識方法。首先,選擇具有良好區(qū)分度的基頻移位差分系數(shù)作為三個方言的特征參數(shù);其次,設計和采用了分層支持向量機分類器,并進一步引入投票法確定最佳的分類結(jié)果。實驗結(jié)果表明該文提取的特征參數(shù)具有良好的區(qū)分性和較強的穩(wěn)定性,該文提出的方言辨識方法比傳統(tǒng)的移位差分倒譜系數(shù)特征方法識別率高,可以有效解決朝鮮朝鮮語、韓國朝鮮語和中國朝鮮族語言的方言辨識問題。
[Abstract]:This paper presents an automatic recognition method for Korean and Korean dialects in China based on pitch frequency features. Firstly, the fundamental shift difference coefficient with good differentiation is chosen as the characteristic parameter of the three dialects. Secondly, the hierarchical support vector machine classifier is designed and adopted, and the voting method is introduced to determine the best classification result. The experimental results show that the feature parameters extracted in this paper have good distinctiveness and strong stability. The dialect identification method proposed in this paper has a higher recognition rate than the traditional shift difference cepstrum coefficient feature method, which can effectively solve the Korean language. Identification of Korean and Chinese Korean dialects.
【作者單位】: 延邊大學計算機科學與技術(shù)學科智能信息處理研究室;
【基金】:吉林省科技廳自然科學基金(20140101225JC)
【分類號】:TN912.3
本文編號:2127278
[Abstract]:This paper presents an automatic recognition method for Korean and Korean dialects in China based on pitch frequency features. Firstly, the fundamental shift difference coefficient with good differentiation is chosen as the characteristic parameter of the three dialects. Secondly, the hierarchical support vector machine classifier is designed and adopted, and the voting method is introduced to determine the best classification result. The experimental results show that the feature parameters extracted in this paper have good distinctiveness and strong stability. The dialect identification method proposed in this paper has a higher recognition rate than the traditional shift difference cepstrum coefficient feature method, which can effectively solve the Korean language. Identification of Korean and Chinese Korean dialects.
【作者單位】: 延邊大學計算機科學與技術(shù)學科智能信息處理研究室;
【基金】:吉林省科技廳自然科學基金(20140101225JC)
【分類號】:TN912.3
【相似文獻】
相關(guān)碩士學位論文 前2條
1 劉雙君;基于韻律的朝鮮語方言辨識方法的研究[D];延邊大學;2015年
2 蘆世丹;朝鮮語語種辨識方法研究[D];延邊大學;2013年
,本文編號:2127278
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2127278.html
最近更新
教材專著