基于感知信息的水質(zhì)等級判斷及三維快速可視化方法研究
本文選題:水質(zhì)等級判斷 + 三維可視化 ; 參考:《南京郵電大學》2017年碩士論文
【摘要】:水資源是地球上最珍貴的資源,是人類賴以生存的資源。隨著人類社會的發(fā)展,水資源不斷受到污染,危害人類健康。水污染防治是保護水資源中一項重要工作,為了有效的進行水污染防治,由無線傳感網(wǎng)組成的自動監(jiān)測系統(tǒng)已經(jīng)被廣泛應用于水環(huán)境監(jiān)測。本文通過無線傳感網(wǎng)獲得水環(huán)境感知信息,根據(jù)這些感知信息進行水質(zhì)等級判斷,并利用三維快速可視化技術根據(jù)判斷結(jié)果繪制水環(huán)境三維圖形,在水污染防治中起到了很好的效果。目前,利用無線傳感網(wǎng)感知信息進行水質(zhì)等級判斷是研究的熱點。由于自然環(huán)境和傳感器自身因素會造成測量數(shù)據(jù)的隨機不確定性和必然不確定性,常用的水質(zhì)等級判斷方法不能夠準確的判斷水質(zhì)等級,針對該問題本文提出了一種基于區(qū)間證據(jù)理論的多傳感器數(shù)據(jù)融合水質(zhì)等級判斷方法?紤]傳感器精度誤差以及測量數(shù)據(jù)異常等問題,將每個傳感器測量的水質(zhì)數(shù)據(jù)用區(qū)間數(shù)表示,通過計算水質(zhì)數(shù)據(jù)與每個水質(zhì)等級特征值之間的距離,得到判斷水質(zhì)等級的區(qū)間證據(jù)。按照區(qū)間證據(jù)組合規(guī)則將多傳感器的區(qū)間證據(jù)融合成綜合區(qū)間證據(jù),并根據(jù)決策準則,由綜合區(qū)間證據(jù)判斷水質(zhì)等級。利用三維快速可視化技術根據(jù)水質(zhì)等級判斷結(jié)果繪制相應的水質(zhì)圖形可以直觀的展現(xiàn)水環(huán)境,方便研究人員進一步做出決策。如何根據(jù)判斷的水質(zhì)等級快速渲染當前水環(huán)境是需要解決的問題。針對該問題本文提出了面向水環(huán)境的三維快速可視化方法,根據(jù)水質(zhì)等級判斷結(jié)果從案例庫中選擇相應的水質(zhì)圖形,通過構建BSP結(jié)構場景樹,利用視域剔除技術達到提升渲染效率的目的,并設計了面向水環(huán)境的三維快速可視化系統(tǒng)。
[Abstract]:Water resources are the most precious resources on the earth and the resources on which human beings depend for survival. With the development of human society, water resources are constantly polluted, endangering human health. Water pollution prevention and control is an important work in protecting water resources. In order to effectively prevent and control water pollution, the automatic monitoring system composed of wireless sensor network has been widely used in water environment monitoring. In this paper, the water environment perception information is obtained by wireless sensor network, according to which the water quality grade is judged, and the 3D visualization technology is used to draw the water environment 3D figure according to the judgment result. In water pollution prevention and control played a good effect. At present, the use of wireless sensor network perception information to judge the water quality is a hot spot. Because of the random uncertainty and inevitable uncertainty of the measurement data caused by the natural environment and the sensor itself, the commonly used water quality grade judgment methods can not accurately judge the water quality grade. To solve this problem, a multi-sensor data fusion method based on interval evidence theory is proposed. Considering the sensor precision error and measurement data anomaly, the water quality data measured by each sensor is expressed by interval number, and the distance between the water quality data and the characteristic value of each water quality grade is calculated by calculating the distance between the water quality data and the characteristic value of each water quality grade. Get the interval evidence to judge the water quality grade. According to the rule of interval evidence combination, the multi-sensor interval evidence is fused into comprehensive interval evidence, and according to the decision criterion, the comprehensive interval evidence is used to judge the water quality grade. Using 3D fast visualization technology to draw the corresponding water quality graphics according to the result of water quality grade judgment can show the water environment intuitively and facilitate the researchers to make further decision. How to quickly render the current water environment according to the grade of water quality is a problem to be solved. In order to solve this problem, a 3D fast visualization method for water environment is proposed. According to the result of water quality grade judgment, the corresponding water quality graph is selected from the case base, and the scene tree of BSP structure is constructed. In order to improve the rendering efficiency, a 3D fast visualization system for water environment is designed.
【學位授予單位】:南京郵電大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:X84;TP212.9;TN929.5
【參考文獻】
相關期刊論文 前10條
1 趙祥好;;BSP樹消隱算法的改進研究[J];安徽師范大學學報(自然科學版);2015年05期
2 趙小敏;梁學利;蔣雙雙;陳慶章;;安全的WSN數(shù)據(jù)融合隱私保護方案設計[J];通信學報;2014年11期
3 于美婷;趙林靖;李釗;;基于DS證據(jù)理論的協(xié)作頻譜感知改進方法[J];通信學報;2014年03期
4 杜璽倫;譚家萬;;真實感圖形學的光照模型研究綜述[J];電子技術與軟件工程;2014年01期
5 郁有建;;論三維可視化技術在我國各個工作環(huán)境中的迫切需要——三維可視化技術在數(shù)字校園建設中的應用[J];計算機光盤軟件與應用;2013年15期
6 樂俊;張維明;肖衛(wèi)東;湯大權;唐九陽;;無結(jié)構動態(tài)適應無線傳感器網(wǎng)絡數(shù)據(jù)融合算法[J];通信學報;2012年09期
7 劉成;袁琳;余明星;婁保鋒;;河流水質(zhì)評價方法綜述[J];吉林農(nóng)業(yè);2012年07期
8 康兵義;李婭;鄧勇;章雅娟;鄧鑫洋;;基于區(qū)間數(shù)的基本概率指派生成方法及應用[J];電子學報;2012年06期
9 卞賀明;邊超;佟建華;孫楫舟;張虹;韓涇鴻;夏善紅;;用于氨氮檢測的三維微納氨氣傳感芯片及系統(tǒng)研究[J];電子與信息學報;2012年05期
10 馮海山;徐曉濱;文成林;;基于證據(jù)相似性度量的沖突性區(qū)間證據(jù)融合方法[J];電子與信息學報;2012年04期
相關博士學位論文 前1條
1 周謐;基于證據(jù)推理的多屬性決策中若干問題的研究[D];合肥工業(yè)大學;2009年
相關碩士學位論文 前10條
1 閆光;基于多傳感器信息融合的動態(tài)目標檢測與識別[D];北京理工大學;2015年
2 王桐明;基于OSG的海洋場景中典型自然現(xiàn)象的仿真[D];大連海事大學;2014年
3 張振瑜;基于遙感的巴丹吉林沙漠湖泊面積變化及其影響因素研究[D];蘭州大學;2014年
4 崔世杰;基于RS和GIS的長江中下游湖泊濕地景觀動態(tài)變化研究[D];華中師范大學;2013年
5 張明陽;無線傳感器網(wǎng)絡在水質(zhì)監(jiān)測中的應用研究[D];合肥工業(yè)大學;2013年
6 馮海山;基于區(qū)間證據(jù)理論的信息融合方法及其應用研究[D];杭州電子科技大學;2012年
7 張昊;基于OSG的道路三維實時交互式可視化技術研究[D];中南大學;2010年
8 張玨;基于無線傳感器網(wǎng)絡的水質(zhì)在線監(jiān)測系統(tǒng)研究[D];重慶大學;2010年
9 吳桐;基于OpenGL三維分形地形的可視化研究[D];西安電子科技大學;2010年
10 安樂生;地表水水質(zhì)評價方法和水質(zhì)預測模型的綜合研究[D];青島大學;2009年
,本文編號:2087685
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2087685.html