WRSNS中SENSOR節(jié)點(diǎn)設(shè)計(jì)與充放電策略研究
發(fā)布時(shí)間:2018-06-29 08:53
本文選題:基于磁耦合諧振的無(wú)線(xiàn)電能傳輸(MCR-WPT) + 無(wú)線(xiàn)可充電傳感器網(wǎng)絡(luò)(WRSNs) ; 參考:《天津工業(yè)大學(xué)》2017年碩士論文
【摘要】:基于磁耦合諧振的無(wú)線(xiàn)電能傳輸(MCR-WPT)技術(shù),為無(wú)線(xiàn)傳感器網(wǎng)絡(luò)能量補(bǔ)充提供新的手段。利用MCR-WPT為網(wǎng)絡(luò)節(jié)點(diǎn)補(bǔ)充能量,構(gòu)建無(wú)線(xiàn)可充電傳感器網(wǎng)絡(luò)(WRSNs),目前成為無(wú)線(xiàn)傳感器網(wǎng)絡(luò)研究熱點(diǎn)之一。在WRSNs中,能無(wú)線(xiàn)充電的節(jié)點(diǎn)設(shè)計(jì)以及節(jié)點(diǎn)間充放電策略直接影響到節(jié)點(diǎn)獲取能量效率,決定網(wǎng)絡(luò)的穩(wěn)健性。本文基于磁耦合諧振無(wú)線(xiàn)電能傳輸特點(diǎn),結(jié)合網(wǎng)絡(luò)節(jié)點(diǎn)功能需求,采用雙電源供電方式,設(shè)計(jì)可充電網(wǎng)絡(luò)節(jié)點(diǎn),保證節(jié)點(diǎn)供電的穩(wěn)定性;在此基礎(chǔ)上,分析節(jié)點(diǎn)充放電過(guò)程中傳輸頻率、距離、負(fù)載對(duì)傳輸功率和傳輸效率的影響,試圖尋找最佳充放電策略,為WRSNs能量分配提供依據(jù)。本文主要工作如下:基于MCR-WPT技術(shù),設(shè)計(jì)可充電傳感器節(jié)點(diǎn),并搭建WRSNs網(wǎng)絡(luò)。根據(jù)WRSNs節(jié)點(diǎn)的功能特點(diǎn),提出節(jié)點(diǎn)設(shè)計(jì)要求及指標(biāo),并進(jìn)行節(jié)點(diǎn)結(jié)構(gòu)設(shè)計(jì)、硬件設(shè)計(jì)和軟件設(shè)計(jì)。硬件設(shè)計(jì)中電源模塊基于MCR-WPT技術(shù),能夠進(jìn)行無(wú)線(xiàn)充電,采用雙電源設(shè)計(jì),保證節(jié)點(diǎn)能夠穩(wěn)定持續(xù)工作。研究MCR-WPT的功能特性,分析節(jié)點(diǎn)充放電過(guò)程中傳輸頻率、距離、負(fù)載對(duì)傳輸功率和傳能效率的影響。由研究結(jié)果得知,在最佳工作條件下,MCR-WPT能夠以較高傳能效率和較大傳輸功率進(jìn)行無(wú)線(xiàn)能量傳輸。節(jié)點(diǎn)充放電策略研究。在節(jié)點(diǎn)無(wú)線(xiàn)充放電過(guò)程中,根據(jù)充電電池充放電情況進(jìn)行分析,劃分鋰電池?zé)o充放電、鋰電池充電不放電、鋰電池放電不充電以及鋰電池邊充電邊放電四種情況,并進(jìn)行實(shí)驗(yàn)研究,分析結(jié)果。由結(jié)果得知,在傳輸距離Omm~130mm范圍內(nèi),鋰電池充電不放電情況下,能夠以較高傳能效率和較大傳輸功率進(jìn)行能量補(bǔ)給,是最佳充放電策略;赪RSNs網(wǎng)絡(luò)實(shí)驗(yàn)平臺(tái),通過(guò)實(shí)驗(yàn)分析,結(jié)果為:所設(shè)計(jì)可充電節(jié)點(diǎn)滿(mǎn)足設(shè)計(jì)要求,諧振頻率為83KHz,在傳輸距離0mm~200mm、水平偏移-80mm~+80mm和偏轉(zhuǎn)角度-50~+50度范圍內(nèi),結(jié)合鋰電池充電不放電情況下,節(jié)點(diǎn)實(shí)現(xiàn)最佳能量補(bǔ)給,延長(zhǎng)生命周期。
[Abstract]:MCR-WPT (Magnetic coupled Resonance based Radio Energy Transmission) technology provides a new method for energy replenishment in wireless sensor networks. Using MCR-WPT to supplement the energy of network nodes to construct wireless rechargeable sensor networks (WRSNs) has become one of the research hotspots in wireless sensor networks. In WRSNs, the design of wireless charging nodes and the charging and discharging strategies between nodes directly affect the energy efficiency of the nodes and determine the robustness of the network. Based on the characteristics of magnetically coupled resonant radio transmission and the functional requirements of network nodes, this paper designs a rechargeable network node to ensure the stability of the node power supply. The effects of transmission frequency, distance and load on transmission power and transmission efficiency during charging and discharging of nodes are analyzed. The best charging and discharging strategy is sought to provide the basis for energy distribution of WRSNs. The main work of this paper is as follows: based on MCR-WPT technology, the rechargeable sensor node is designed and the WRSNs network is built. According to the functional characteristics of WRSNs node, the design requirements and specifications of the node are put forward, and the node structure design, hardware design and software design are carried out. In the hardware design, the power module is based on MCR-WPT technology, which can be used for wireless charging and dual power supply design to ensure that the node can work stably and continuously. The functional characteristics of MCR-WPT are studied, and the effects of transmission frequency, distance and load on transmission power and energy transfer efficiency are analyzed. The results show that MCR-WPT can transmit the wireless energy with higher energy transmission efficiency and higher transmission power under the optimal working conditions. Research on charging and discharging Strategy of Node. In the process of wireless charging and discharging of nodes, according to the charging and discharging situation of charging battery, there are four kinds of cases: no charge and discharge of lithium battery, no charge and discharge of lithium battery while charging. The experimental study was carried out and the results were analyzed. The results show that the best charging and discharging strategy is to supply the energy with higher energy transfer efficiency and higher transmission power under the condition that the charge of lithium battery does not discharge in the range of transmission distance of Ommna 130mm. Based on the WRSNs network experimental platform, the experimental results show that the designed rechargeable nodes meet the design requirements, the resonant frequency is 83 KHz, the transmission distance is 0 mm to 200 mm, the horizontal offset is -80 mm ~ 80mm and the deflection angle is -50 ~ 50 degrees. In the case of lithium battery charging without discharge, the node realizes the best energy recharge and prolongs the life cycle.
【學(xué)位授予單位】:天津工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TN929.5;TP212.9
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫凌逸;胡昌華;蔡偉;楊志勇;;一種小型化超聲波管外測(cè)壓節(jié)點(diǎn)設(shè)計(jì)[J];傳感技術(shù)學(xué)報(bào);2014年04期
2 宋濤;吳嘉澍;李壘營(yíng);;基于AMN11111的無(wú)線(xiàn)安防節(jié)點(diǎn)設(shè)計(jì)[J];激光與紅外;2008年10期
3 趙哲;馬曉s,
本文編號(hào):2081572
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2081572.html
最近更新
教材專(zhuān)著