修正建筑物內(nèi)三維定位誤差的運(yùn)動(dòng)感知方法研究
發(fā)布時(shí)間:2018-06-19 23:41
本文選題:室內(nèi)定位 + 累積誤差。 參考:《計(jì)算機(jī)應(yīng)用研究》2017年09期
【摘要】:針對(duì)行人室內(nèi)慣性定位存在航向發(fā)散和累積誤差的問題,提出采用運(yùn)動(dòng)感知的方法實(shí)時(shí)識(shí)別行人的運(yùn)動(dòng)狀態(tài),利用行人狀態(tài)約束(直線運(yùn)動(dòng))和特殊運(yùn)動(dòng)狀態(tài)(上下樓梯、乘坐電梯、90°或180°轉(zhuǎn)彎)的特殊點(diǎn)匹配方法來抑制航向的發(fā)散,消除累積誤差;提取加速度信號(hào)的時(shí)域特征,利用神經(jīng)網(wǎng)絡(luò)對(duì)行人運(yùn)動(dòng)狀態(tài)進(jìn)行識(shí)別,不同的運(yùn)動(dòng)形式(走、跑、上下樓梯)采取不同的步長(zhǎng)模型,從而提高位置推算精度。為驗(yàn)證算法的有效性,在4樓和6樓之間進(jìn)行多次行走實(shí)驗(yàn),實(shí)驗(yàn)結(jié)果表明,通過運(yùn)動(dòng)感知可以明顯抑制航向的發(fā)散,消除累積誤差,三維空間內(nèi)的定位誤差約為總行程的1.6%。
[Abstract]:In order to solve the problem of heading divergence and accumulated error in indoor inertial positioning of pedestrians, a motion sensing method is proposed to identify the moving states of pedestrians in real time, using pedestrian state constraints (linear motion) and special motion states (up and down stairs). The special point matching method of 90 擄or 180 擄turn of elevator is used to restrain the divergence of course and eliminate the accumulated error, the time domain feature of acceleration signal is extracted, and the moving state of pedestrian is recognized by neural network, and the different motion forms (walking, running, running) are obtained. Different step-size models are used to improve the accuracy of position calculation. In order to verify the validity of the algorithm, several walking experiments were carried out between the fourth and sixth floors. The experimental results show that the divergence of course can be significantly suppressed by motion perception, and the accumulated error can be eliminated. The positioning error in three dimensional space is about 1.6 of the total stroke.
【作者單位】: 北京信息科技大學(xué)高動(dòng)態(tài)導(dǎo)航技術(shù)北京市重點(diǎn)實(shí)驗(yàn)室;
【基金】:國(guó)家自然科學(xué)基金資助項(xiàng)目(61471046) 北京市教委市屬高校創(chuàng)新能力提升計(jì)劃資助項(xiàng)目(TJSHG201510772017) 高動(dòng)態(tài)導(dǎo)航技術(shù)北京市重點(diǎn)實(shí)驗(yàn)室開放課題
【分類號(hào)】:TN96;TP183
,
本文編號(hào):2041863
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2041863.html
最近更新
教材專著