主動實時聲定位系統(tǒng)的軟件設計
發(fā)布時間:2018-06-15 05:32
本文選題:實時聲定位 + TDOA; 參考:《中北大學》2017年碩士論文
【摘要】:陸地爆炸試驗和軍事演習時,為了進行爆炸威力技術參數(shù)測試,常在離爆炸點一定距離處隨機布置眾多沖擊波傳感器。為實現(xiàn)對大量沖擊波傳感器位置的快速、準確定位,本文提出了主動實時聲定位的解決方案,并重點研究了主動實時聲定位的軟件設計實現(xiàn)與優(yōu)化。論文構(gòu)建了基于聲達時間差(TDOA)定位原理的主動實時聲定位的系統(tǒng)模型。主動實時聲定位系統(tǒng)由無線監(jiān)控終端、聲信號發(fā)射系統(tǒng)、聲信號接收處理定位系統(tǒng)三大子系統(tǒng)組成。設置了揚聲器將發(fā)出聲信號的頻率及編碼,并設計編寫了前兩個子系統(tǒng)的軟件程序。考慮到處理定位系統(tǒng)的實時性和軟件架構(gòu)的優(yōu)越性,聲信號接收處理定位系統(tǒng)采用基于ARM9的μC/OS-II實時操作系統(tǒng)的軟件編程。論文初步研究設計了聲信號處理識別涉及的四個過程的算法,細致深入地研究了提高處理實時性、軟件系統(tǒng)魯棒性、定位精確性三方面性能的軟件結(jié)構(gòu)優(yōu)化策略和部分算法的優(yōu)化方案。在處理實時性方面,提出了快速頻率檢測算法及個別細節(jié)部分計算方法的優(yōu)化方案。在軟件系統(tǒng)魯棒性方面,按能量特征對有效信號區(qū)間再細分段;確定特征信號起始點時,對與特征信號相關度較好對應的位置點均保存?zhèn)溥x;信源信號快速測頻時,對已識別的頻率下次不再檢測,且將首輪測頻結(jié)果保存以防首輪測頻有未識別頻率時對此頻率進行二輪檢測。在定位精確性方面,用相位矯正方法糾正聲信號起始點偏差并據(jù)環(huán)境溫度精確計算聲速來提高距離差的精度。代入實驗數(shù)據(jù)并將優(yōu)化前后的效果性能作比較,各方面性能優(yōu)化后確實得到極大提升。多次反復實驗證實,主動實時聲定位系統(tǒng)定位大量傳感器的方案是可行的。經(jīng)軟件程序結(jié)構(gòu)和部分算法的深入優(yōu)化,系統(tǒng)的魯棒性、實時性、精確性極大提高。目前,定位精度達40cm,處理時間為5s。
[Abstract]:In order to test the technical parameters of explosion power, a large number of shock wave sensors are randomly arranged at a certain distance from the explosion site during the land explosion test and military exercises. In order to locate a large number of shock wave sensors quickly and accurately, this paper presents a solution of active real-time acoustic localization, and focuses on the software design and optimization of active real-time acoustic positioning. In this paper, a system model of active real time acoustic localization based on the principle of time difference of arrival (TDOA) is constructed. The active real-time acoustic positioning system consists of three subsystems: wireless monitoring terminal, acoustic signal transmitting system and acoustic signal receiving and processing positioning system. The frequency and coding of the sound signal will be set up by the loudspeaker, and the software program of the first two subsystems is designed and written. Considering the advantages of real-time processing and software architecture, the acoustic signal receiving and processing positioning system adopts the software programming of 渭 C / OS-II real-time operating system based on ARM9. In this paper, the four algorithms involved in acoustic signal processing and recognition are preliminarily studied, and the robustness of software system is studied in detail and deeply. The optimization strategy of software structure and the optimization scheme of some algorithms are presented in this paper. In the aspect of real-time processing, the optimization scheme of fast frequency detection algorithm and the calculation method of some details is put forward. In the aspect of software system robustness, the effective signal interval is subdivided according to the energy feature; when the starting point of the feature signal is determined, the location corresponding to the feature signal correlation degree is preserved. The identified frequency will not be detected next time, and the first frequency measurement results will be saved in case there is an unrecognized frequency in the first frequency measurement, and the frequency will be detected by two rounds. In the aspect of location accuracy, phase correction is used to correct the initial deviation of acoustic signal and the sound velocity is calculated accurately according to ambient temperature to improve the accuracy of distance difference. With the experimental data and the comparison of the performance before and after optimization, the performance of all aspects of the optimization has been greatly improved. Repeated experiments have proved that the active real-time acoustic positioning system is feasible to locate a large number of sensors. The robustness, real-time and accuracy of the system are greatly improved by deep optimization of the software program structure and some algorithms. At present, the positioning accuracy is up to 40 cm and the processing time is 5 s.
【學位授予單位】:中北大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TN912.3
【參考文獻】
相關期刊論文 前10條
1 何成建;張丕狀;;基于實時主動聲定位的快速測頻算法[J];應用聲學;2017年01期
2 黃梓瑜;高文剛;譚威;范維志;;寬范圍微弱電流對數(shù)放大電路設計與仿真[J];工業(yè)控制計算機;2013年06期
3 李昌祿;蘇寒松;;超聲波定位系統(tǒng)的研究[J];實驗室研究與探索;2013年02期
4 孫大軍;鄭翠娥;錢洪寶;李昭;;水聲定位系統(tǒng)在海洋工程中的應用[J];聲學技術;2012年02期
5 韓健;姚武軍;宋建強;;水聲定位在平臺動力定位中的發(fā)展和現(xiàn)狀[J];艦船科學技術;2009年10期
6 傅智敏;黃金印;臧娜;;爆炸沖擊波傷害破壞作用定量分析[J];消防科學與技術;2009年06期
7 李從清;孫立新;戴士杰;李洙梁;;機器人聽覺定位跟蹤聲源的研究與進展[J];燕山大學學報;2009年03期
8 姜健;趙杰;李力坤;;面向群智能機器人系統(tǒng)的聲音協(xié)作定向[J];自動化學報;2007年04期
9 靳瑩;楊潤澤;;聲測定位技術的現(xiàn)狀研究[J];電聲技術;2007年02期
10 李承智,曲天書,吳璽宏;一種改進的AEDA聲源定位及跟蹤算法[J];北京大學學報(自然科學版);2005年05期
,本文編號:2020885
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2020885.html
最近更新
教材專著