基于光雙邊帶調(diào)制的高精度光矢量分析技術(shù)
發(fā)布時間:2018-06-13 09:53
本文選題:光矢量分析 + 雙邊帶調(diào)制 ; 參考:《南京航空航天大學(xué)》2017年碩士論文
【摘要】:超大容量光通信、慢光存儲、超高精度計量等前沿研究,要求光器件和光子集成芯片具有多維(包括幅度、相位和偏振)、高精細(xì)的頻譜操控能力。在研制、生產(chǎn)和應(yīng)用這些光器件和光芯片的過程中,必須精細(xì)測量出其在多個維度上的光譜響應(yīng)。目前,僅有基于光單邊帶調(diào)制的光矢量分析技術(shù)可實現(xiàn)光器件多維光譜響應(yīng)的高精細(xì)測量,但該方法具有測量帶寬小、非線性誤差大、無法測量帶通器件等缺點。針對這些關(guān)鍵問題,本文提出并研究了基于光雙邊帶調(diào)制的光矢量分析技術(shù),具體研究工作如下:首次提出了基于光雙邊帶調(diào)制的光矢量分析技術(shù),通過對光載波移頻實現(xiàn)非對稱光雙邊帶調(diào)制,經(jīng)光電轉(zhuǎn)換后使兩個一階邊帶所攜帶的響應(yīng)信息分別轉(zhuǎn)換到兩個不同頻率的微波信號上,采用微波幅相檢測即可獲取待測器件在光載波兩側(cè)的頻譜響應(yīng)。相比于傳統(tǒng)的基于光單邊帶掃頻的光矢量分析技術(shù),本方法突破了測量系統(tǒng)中光電子器件和微波器件工作帶寬的限制,將單通道測量帶寬提升了一倍;由于所檢測信號與高階邊帶所產(chǎn)生的拍頻信號在頻率上不同,測量結(jié)果不會受到高階邊帶的影響。提出并實驗論證了三種基于光雙邊帶調(diào)制的光矢量分析技術(shù)方案;诼暪庖祁l法與非對稱雙邊帶調(diào)制的光矢量分析技術(shù)可測量幅度響應(yīng),且其動態(tài)范圍和信噪比高,適合測量帶通光器件;基于受激布里淵散射與非對稱雙邊帶調(diào)制的光矢量分析技術(shù)可同時測量幅度與相位響應(yīng),可實現(xiàn)較大的邊帶抑制比,殘留邊帶對系統(tǒng)影響較小;基于雙驅(qū)動調(diào)制器與非對稱雙邊帶調(diào)制的光矢量分析技術(shù)可同時測量幅度與相位響應(yīng),結(jié)構(gòu)簡單,且測量結(jié)果無明顯畸變點。此外,本文對測量系統(tǒng)的性能進(jìn)行了研究,通過解析分析和數(shù)值仿真相結(jié)合的方式分別研究了非對稱光雙邊帶信號中殘留邊帶、原載波和高階邊帶對光矢量分析準(zhǔn)確度的影響。本文還提出了關(guān)鍵測量性能提升技術(shù),基于光頻梳的測量帶寬拓展技術(shù)可實現(xiàn)測量帶寬大于1THz的光矢量分析,共模噪聲抑制技術(shù)可消除光源功率波動和電光調(diào)制器非線性等對測量結(jié)果的影響。綜上所述,本文提出了新型光矢量分析方案,即基于光雙邊帶調(diào)制的光矢量分析技術(shù),實現(xiàn)了多維度、大測量帶寬、高精度的光矢量分析,并采用理論分析與實驗驗證相結(jié)合的方式進(jìn)行了初步研究?稍诟呔(xì)光器件和創(chuàng)新光子集成芯片的研制和應(yīng)用中獲取新數(shù)據(jù),從而有力支撐前沿研究領(lǐng)域的創(chuàng)新和突破。
[Abstract]:Ultra large capacity optical communication, slow light storage, ultra high precision measurement, etc., require optical devices and photonic integrated chips to have multidimensional (including amplitude, phase and polarization) and high precision spectrum manipulation ability. In the development, production and application of these optical devices and optical chips, it is necessary to carefully measure the spectral ringing in many dimensions. At present, only optical vector analysis based on optical single side band modulation can achieve high precision measurement of multidimensional spectral response of optical devices. However, this method has the disadvantages of small measurement bandwidth, large nonlinear error and can not measure band-pass devices. Technology and specific research work are as follows: the optical vector analysis technology based on optical bilateral band modulation is proposed for the first time. The modulation of asymmetrical optical bilateral band is realized by frequency shift of optical carrier. After photoelectric conversion, the response information carried by two first order side bands is converted to two different frequency microwave signals, and microwave amplitude phase detection can be used. The spectral response of the device to be measured on both sides of the optical carrier is obtained. Compared to the traditional optical vector analysis based on optical single side band sweep, this method breaks through the limitation of the bandwidth of the optoelectronic devices and microwave devices in the measurement system, doubles the bandwidth of the single channel measurement, and the beat frequency produced by the detected signal and the high order band band. The signal is different in frequency and the result will not be influenced by the high order band. Three optical vector analysis techniques based on optical bilateral band modulation are proposed and demonstrated. The amplitude response of the optical vector analysis technique based on the acoustooptic frequency shift and the asymmetric bilateral band modulation can be measured, and its dynamic range and signal to noise ratio are high, suitable for the measuring band. Optical devices; optical vector analysis based on stimulated Brillouin scattering and asymmetric bilateral band modulation can measure both amplitude and phase response simultaneously, which can achieve larger side band rejection ratio. Residual edges have little influence on the system; optical vector analysis technology based on dual drive modulator and asymmetric bilateral band modulation can measure both amplitude and phase simultaneously. In addition, the performance of the measurement system is studied. The influence of the residual band, the original carrier and the high order band on the accuracy of the optical vector analysis is studied by the combination of analytic analysis and numerical simulation. The key measurement performance enhancement technology, based on the optical frequency comb measurement bandwidth expansion technology can measure the optical vector analysis of the bandwidth greater than 1THz, and the common mode noise suppression technology can eliminate the influence of the power fluctuation of the light source and the nonlinearity of the electro-optic modulator on the measurement results. In the above description, a new optical vector analysis scheme, based on light, is proposed. The optical vector analysis technology of bilateral band modulation has realized the multi-dimensional, large measurement bandwidth, high precision optical vector analysis, and a preliminary study is carried out by combining theoretical analysis with experimental verification. New data can be obtained in the development and application of high precision light devices and innovative photonic integrated chips, which can strongly support the frontier research. Innovations and breakthroughs in the field.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN929.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前4條
1 胡衛(wèi)生;鄭宏軍;羅清龍;;超密集波分復(fù)用無源光網(wǎng)絡(luò)技術(shù)[J];中興通訊技術(shù);2014年05期
2 張承;周雷;胡偉;;航空發(fā)動機(jī)用光纖葉片振動傳感探頭的研制[J];中國電子科學(xué)研究院學(xué)報;2011年02期
3 于秀娟;余有龍;張敏;廖延彪;;光纖光柵傳感器在航空航天復(fù)合材料/結(jié)構(gòu)健康監(jiān)測中的應(yīng)用[J];激光雜志;2006年01期
4 鮑吉龍,章獻(xiàn)民,陳抗生,周文;光纖光柵傳感器及其應(yīng)用[J];激光技術(shù);2000年03期
,本文編號:2013623
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2013623.html
最近更新
教材專著