用于5G終端的毫米波多波束天線
發(fā)布時間:2018-06-10 12:17
本文選題:5G + 移動終端 ; 參考:《電子科技大學(xué)》2017年碩士論文
【摘要】:4G LTE技術(shù)的不斷升級和部署應(yīng)用,標(biāo)志著移動通信步入了4G無線寬帶時代。為滿足日益增長的用戶需求,各國都在爭先展開下一代移動通信(5G)的研發(fā)。由于具有極寬的絕對帶寬,可在很大程度上提高信道容量和數(shù)據(jù)傳輸速率的毫米波技術(shù)成為了未來5G移動通信關(guān)鍵技術(shù)之一。雖然如此,但毫米波信號在電路和大氣中損耗大、衰減嚴(yán)重、傳輸效率低等問題仍待研究。鑒于此,本文將主要圍繞用于5G終端毫米波饋電網(wǎng)絡(luò)和天線的研究,采用多波束方案以在保證增益的同時拓寬波束的覆蓋范圍。PCB電路如微帶電路有較為顯著的介質(zhì)和輻射損耗,而傳統(tǒng)金屬波導(dǎo)雖然損耗低、信號干擾小,但其結(jié)構(gòu)很難做到小型化和集成。因此這兩種結(jié)構(gòu)不適用于要求低功耗且空間尺寸受限的移動終端。采用基片集成波導(dǎo)(SIW)可同時降低損耗和增加可集成性,其兼?zhèn)淞私饘俨▽?dǎo)和平面電路的優(yōu)良屬性,是未來5G毫米波終端應(yīng)用場景最佳的選項之一。本文的主要內(nèi)容包括:對SIW、波束掃描陣、縫隙天線陣和Butler矩陣多波束饋電網(wǎng)絡(luò)等基本原理進(jìn)行了簡要的回顧。此四方面的知識是本文所有設(shè)計的理論支撐。系統(tǒng)梳理了SIW、縫隙天線陣的設(shè)計步驟和Butler矩陣饋電網(wǎng)絡(luò)的分析方法。提出了將4×4 Butler矩陣多波束饋電網(wǎng)絡(luò)用于未來5G終端天線的設(shè)計以實現(xiàn)多波束寬角度高增益信號覆蓋。本文選擇采用了多波束方案,并結(jié)合了5G移動終端設(shè)計了適用于5G終端的4×4 Butler矩陣多波束饋電網(wǎng)絡(luò)和縫隙天線陣。加工測試表明多波束方案基本可滿足未來5G終端天線的要求。在傳統(tǒng)4×4 Butler的基礎(chǔ)上,提出和設(shè)計了一款改進(jìn)型的4×4 SIW Butler矩陣。從理論上驗證了方案的可行性且推導(dǎo)了各個器件須滿足的條件。新設(shè)計的Butler矩陣其核心是將移相器歸入到 3d B定向耦合器的設(shè)計中。仿真和測試結(jié)果表明,改進(jìn)型的4×4 SIW Butler矩陣不僅擁有更好的輸出幅相平坦度還具有比傳統(tǒng)4×4 SIW Butler矩陣更高的設(shè)計靈活性。設(shè)計了一款3×3 SIW Butler矩陣。首先給出了該款矩陣的設(shè)計思路來源,然后從原理上驗證了此矩陣設(shè)計的可行性和詳細(xì)地推導(dǎo)出了3×3 Butler矩陣的結(jié)構(gòu)和器件參數(shù)。仿真和結(jié)果表明,該型Butler矩陣比4×4 SIW Butler矩陣尺寸更小、結(jié)構(gòu)更簡單,但具有和4×4 SIW Butler矩陣相當(dāng)?shù)脑鲆嬷岛筒ㄊ采w范圍。
[Abstract]:With the continuous upgrading and deployment of 4G LTE technology, mobile communication has entered the 4G wireless broadband era. In order to meet the increasing demand of users, all countries are developing the next generation mobile communication. Because of the extremely wide absolute bandwidth, millimeter-wave technology, which can greatly improve the channel capacity and data transmission rate, has become one of the key technologies of 5G mobile communication in the future. However, the millimeter wave signal has many problems, such as high loss in circuit and atmosphere, serious attenuation and low transmission efficiency. In view of this, this paper will focus on the research of 5G terminal millimeter-wave feed network and antenna, and adopt multi-beam scheme to widen the coverage of the beam while ensuring the gain. PCB circuit, such as microstrip circuit, has significant dielectric and radiation loss. Although the loss of traditional metal waveguide is low and the signal interference is small, its structure is difficult to be miniaturized and integrated. Therefore, these two structures are not suitable for mobile terminals with low power consumption and limited space size. The substrate integrated waveguide (SIW) can reduce the loss and increase the integrability at the same time. It combines the excellent properties of metal waveguide and planar circuit, and is one of the best options for 5G millimeter-wave terminal applications in the future. The main contents of this paper are as follows: the basic principles of SIW, beam scanning array, slot antenna array and Butler matrix multi-beam feed network are briefly reviewed. These four aspects of knowledge are the theoretical support of all the designs in this paper. The design steps of SIW, slot antenna array and the analysis method of Butler matrix feed network are systematically combed. A 4 脳 4 Butler matrix multi-beam feed network is proposed for the design of 5G terminal antenna in the future to achieve multi-beam wide-angle high-gain signal coverage. In this paper, the multi-beam scheme is adopted, and the 4 脳 4 Butler matrix multi-beam feed network and slot antenna array are designed for 5G terminal combined with 5G mobile terminal. Processing tests show that the multi-beam scheme can meet the requirements of 5 G terminal antenna in the future. Based on the traditional 4 脳 4 Butler, an improved 4 脳 4 SIW Butler matrix is proposed and designed. The feasibility of the scheme is verified theoretically and the necessary conditions for each device are deduced. The core of the newly designed Butler matrix is to incorporate the phase shifter into the design of the 3D B directional coupler. The simulation and test results show that the modified 4 脳 4 SIW Butler matrix not only has better output amplitude and phase flatness, but also has higher design flexibility than the traditional 4 脳 4 SIW Butler matrix. A 3 脳 3 SIW Butler matrix is designed. At first, the source of the design idea of the matrix is given, then the feasibility of the matrix design is verified in principle and the structure and device parameters of the 3 脳 3 Butler matrix are deduced in detail. The simulation results show that the Butler matrix is smaller in size and simpler in structure than that of 4 脳 4 SIW Butler matrix, but it has a gain and beam coverage range comparable to that of 4 脳 4 SIW Butler matrix.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN828.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前3條
1 ZHANG Weiwei;WANG Yanlong;;Review of the Development of China's Mobile Broadband Networks[J];中國通信;2015年06期
2 逄型棟;洪偉;楊天楊;李林盛;;應(yīng)用于第五代無線通信大規(guī)模MIM0的有源多波束天線系統(tǒng)(英文)[J];中國通信;2014年11期
3 ;A survey of next generation mobile communications researchin China[J];Chinese Science Bulletin;2011年27期
,本文編號:2003193
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/2003193.html
最近更新
教材專著