超密集組網(wǎng)中聯(lián)合傳輸與聯(lián)合資源分配算法的研究
本文選題:超密集組網(wǎng) + 干擾管理 ; 參考:《哈爾濱工業(yè)大學(xué)》2017年碩士論文
【摘要】:隨著用戶對高清視頻、虛擬視覺(VR)等高速率、低時延業(yè)務(wù)的需求逐漸提高,現(xiàn)有的第四代移動通信(4G)技術(shù)將無法滿足未來的通信需要。因此,對于第五代移動通信(5G)的研究有著前瞻性的價值與重要意義。與4G相比,5G將擁有更高的傳輸速率、更高的可靠性、更低的網(wǎng)絡(luò)時延、更多樣的網(wǎng)絡(luò)設(shè)備(物聯(lián)網(wǎng))以及更密集的用戶終端。為了滿足在部分特定場景下(如寫字樓,體育場館)用戶的高通信需求,超密集組網(wǎng)(Ultra-Dense Networks,UDN)技術(shù)應(yīng)運(yùn)而生。超密集組網(wǎng)通過部署多層次、高密度的接入節(jié)點(diǎn)來提高整體的系統(tǒng)容量。在熱點(diǎn)高容量地區(qū),超密集組網(wǎng)對于高速率、高密度、多種服務(wù)等通信業(yè)務(wù)的支持有著極大的潛力。超密集組網(wǎng)的應(yīng)用,可以幫助頻域資源的有效利用,并實(shí)現(xiàn)海量設(shè)備的高質(zhì)量通信。但超密集組網(wǎng)的部署過程中,一個不可忽視的問題就是小區(qū)間的較強(qiáng)干擾。由于節(jié)點(diǎn)之間密度大,拉近了接收端與發(fā)射端距離的同時,也縮小了接收端與干擾源的距離,導(dǎo)致干擾強(qiáng)度增強(qiáng)、強(qiáng)干擾源數(shù)量增加。此外由于超密集組網(wǎng)是多層次的異構(gòu)部署方式,層間干擾無法忽視,系統(tǒng)容量的提高遠(yuǎn)遠(yuǎn)達(dá)不到預(yù)期要求。因此,超密集組網(wǎng)的研究重點(diǎn)在于如何進(jìn)行有效的干擾抑制,減少同頻干擾。本文通過應(yīng)用多點(diǎn)協(xié)作傳輸(Co MP)技術(shù)進(jìn)行超密集組網(wǎng)的干擾管理。采用多點(diǎn)協(xié)作技術(shù)的原因主要包含以下兩方面。首先,節(jié)點(diǎn)密度大,提高了多點(diǎn)協(xié)作傳輸所要求的多個節(jié)點(diǎn)共同協(xié)作的可能性。其次,超密集組網(wǎng)中干擾通常來自多個鄰近節(jié)點(diǎn),存在干擾源數(shù)量較大、干擾強(qiáng)度較強(qiáng)、干擾源異構(gòu)等現(xiàn)象。只研究單一節(jié)點(diǎn),沒有節(jié)點(diǎn)之間協(xié)作的干擾抑制是不可行的。在多點(diǎn)協(xié)作傳輸中,本文主要研究了聯(lián)合傳輸技術(shù)(JT)對干擾管理的作用。通過聯(lián)合傳輸中協(xié)作集的選擇討論了不同協(xié)作集選擇方式對干擾抑制與系統(tǒng)性能提升的影響。繼而考慮了系統(tǒng)回傳鏈路容量限制對協(xié)作集選擇的影響,并通過基站睡眠/喚醒方式降低了回傳鏈路壓力。此外,由于傳統(tǒng)子載波分配方式并不適用于多節(jié)點(diǎn)同時同頻服務(wù)一個用戶的聯(lián)合傳輸場景,本課題還進(jìn)行了適用于聯(lián)合傳輸技術(shù)的子載波分配算法的改進(jìn)。通過聯(lián)合傳輸技術(shù)與子載波分配算法解決了超密集組網(wǎng)中干擾抑制問題,提高了系統(tǒng)性能。
[Abstract]:With the high speed of high definition video, virtual vision and VRV, and the increasing demand of low delay services, the existing fourth generation mobile communication (4G) technology will not be able to meet the future communication needs. Therefore, the fifth generation mobile communication 5 G) research has the prospective value and the important significance. Compared with 4G, the 5G will have higher transmission rate, higher reliability, lower network delay, more diverse network devices (Internet of things) and more dense user terminals. In order to meet the high communication requirements of users in some specific scenarios, such as office buildings, stadiums and stadiums, Ultra-Dense Networks (UDN) technology emerges as the times require. Super-dense network improves the system capacity by deploying multi-level and high-density access nodes. In hot and high capacity areas, ultra-dense networks have great potential for supporting high-rate, high-density, multi-service communication services. The application of super dense network can help the efficient use of frequency domain resources and realize the high quality communication of mass equipment. However, in the deployment of super-dense networks, a problem that can not be ignored is the strong interference between the cells. Because of the high density between the nodes, the distance between the receiver and the transmitter is shortened, and the distance between the receiver and the interference source is reduced, which leads to the increase of the interference intensity and the increase of the number of strong interference sources. In addition, because the super-dense network is a multi-level heterogeneous deployment mode, inter-layer interference can not be ignored, and the system capacity can not reach the expected requirements. Therefore, the research focus of ultra-dense network is how to suppress interference effectively and reduce the interference of the same frequency. In this paper, the interference management of super-dense network is implemented by using multi-point cooperative transmission co-MPI technology. The reason of adopting multi-point cooperation technology mainly includes the following two aspects. Firstly, because of the high node density, the possibility of multi-node cooperation required by multi-point cooperative transmission is improved. Secondly, the interference usually comes from several adjacent nodes in the super-dense network. There are many interference sources, such as large number of interference sources, strong interference intensity, heterogeneity of interference sources, and so on. It is not feasible to study only a single node without cooperative interference suppression between nodes. In multipoint cooperative transmission, this paper mainly studies the effect of JT on interference management. The effects of different cooperative set selection methods on interference suppression and system performance improvement are discussed through the selection of cooperative sets in joint transmission. Then the influence of the capacity limitation of the system return link on the selection of the cooperative set is considered and the pressure of the return link is reduced by the sleep / wake-up mode of the base station. In addition, because the traditional subcarrier allocation method is not suitable for multi-node simultaneous co-frequency service of a user's joint transmission scenario, the subcarrier allocation algorithm suitable for joint transmission technology is also improved in this paper. The joint transmission technique and subcarrier allocation algorithm are used to solve the problem of interference suppression in super-dense network, and the system performance is improved.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN929.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前3條
1 張建敏;謝偉良;楊峰義;;5G超密集組網(wǎng)網(wǎng)絡(luò)架構(gòu)及實(shí)現(xiàn)[J];電信科學(xué);2016年06期
2 尤肖虎;潘志文;高西奇;曹淑敏;鄔賀銓;;5G移動通信發(fā)展趨勢與若干關(guān)鍵技術(shù)[J];中國科學(xué):信息科學(xué);2014年05期
3 李校林;盧清;;基于用戶滿意度的CoMP-JT多小區(qū)資源分配算法[J];重慶郵電大學(xué)學(xué)報(自然科學(xué)版);2013年06期
相關(guān)博士學(xué)位論文 前2條
1 于佳;基于CoMP技術(shù)的密集網(wǎng)絡(luò)資源分配研究[D];哈爾濱工業(yè)大學(xué);2015年
2 章輝;蜂窩小區(qū)干擾抑制與性能增強(qiáng)技術(shù)研究[D];北京郵電大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 張洪;超密集組網(wǎng)中區(qū)域頻譜效率及區(qū)域能量效率的研究[D];哈爾濱工業(yè)大學(xué);2016年
2 賈紅娜;基于OFDMA的無線資源分配算法研究[D];燕山大學(xué);2016年
3 孫瑞;LTE-A異構(gòu)網(wǎng)絡(luò)多點(diǎn)協(xié)作傳輸技術(shù)研究[D];電子科技大學(xué);2016年
4 馮偉龍;超密集網(wǎng)絡(luò)(UDN)的性能分析與關(guān)鍵技術(shù)研究[D];北京交通大學(xué);2016年
5 劉海燕;面向5G的超密集網(wǎng)絡(luò)中分布式無線資源管理的研究[D];北京交通大學(xué);2016年
6 郭少珍;超密集網(wǎng)絡(luò)中的分布式優(yōu)化算法的研究[D];北京理工大學(xué);2016年
7 陶銘亮;下一代網(wǎng)絡(luò)中動態(tài)TDD模式下的干擾協(xié)調(diào)和時序控制[D];北京郵電大學(xué);2015年
8 張彤;CoMP下無線資源分配研究[D];北京郵電大學(xué);2015年
9 張會麗;異構(gòu)融合網(wǎng)絡(luò)聯(lián)合資源分配算法研究[D];重慶郵電大學(xué);2014年
10 朱峰;熱點(diǎn)區(qū)域LTE小基站干擾協(xié)調(diào)研究[D];蘭州大學(xué);2014年
,本文編號:1997839
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1997839.html