固態(tài)太赫茲高速無線通信技術(shù)
本文選題:太赫茲波 + 肖特基勢壘二極管。 參考:《電子科技大學(xué)》2017年博士論文
【摘要】:太赫茲波是指頻率在100GHz到10THz之間的電磁波。這一段電磁頻譜處于傳統(tǒng)電子學(xué)和光子學(xué)研究頻段之間的特殊位置,過去對其研究以及開發(fā)利用都相對較少。隨著無線通信的高速發(fā)展,現(xiàn)有的頻譜資源已變得日益匱乏,開發(fā)無線通信的新頻段已逐漸成為解決此矛盾的一種共識,而在太赫茲頻段存在大量未被開發(fā)的頻譜資源,使得太赫茲頻率適于作為未來無線通信的新頻段。在眾多技術(shù)途徑中,采用固態(tài)電子學(xué)的技術(shù)途徑實(shí)現(xiàn)無線通信系統(tǒng),未來存在將系統(tǒng)進(jìn)行片上集成的可能,這對太赫茲無線通信系統(tǒng)走向?qū)嵱没哂兄匾饬x。本文研究圍繞固態(tài)太赫茲高速無線通信技術(shù)展開,以無線通信系統(tǒng)的實(shí)現(xiàn)為牽引,對構(gòu)成太赫茲無線系統(tǒng)的兩種關(guān)鍵電路(分諧波混頻器和二倍頻器)進(jìn)行了深入研究,基于關(guān)鍵電路的突破,構(gòu)建了太赫茲無線通信系統(tǒng)并成功進(jìn)行了高速無線數(shù)據(jù)傳輸實(shí)驗(yàn)。本文主要內(nèi)容包括以下三個方面:(1)太赫茲頻段分諧波混頻技術(shù)。分諧波混頻器在無線系統(tǒng)中實(shí)現(xiàn)頻率變換的功能,在缺乏固態(tài)放大器的太赫茲頻段,這個關(guān)鍵電路的指標(biāo)直接關(guān)系到系統(tǒng)的整體性能。本文研究從肖特基勢壘二極管的物理機(jī)理入手,對混頻二極管的等效電路模型、噪聲模型和三維電磁模型的建模方法進(jìn)行了深入的理論研究,分析了二極管參數(shù)和封裝寄生參數(shù)對混頻性能的影響,并提出了一種基于器件三維電磁模型提取反向并聯(lián)二極管對寄生電容的方法。為提高電路優(yōu)化效率,本文提出了一種電路優(yōu)化方法,該方法的基本思想是,首先找到非線性器件的最優(yōu)工作狀態(tài),以及使器件達(dá)到最優(yōu)工作狀態(tài)所需的阻抗條件,以滿足阻抗條件為目標(biāo),通過S參數(shù)優(yōu)化匹配,在匹配網(wǎng)絡(luò)確定后,再結(jié)合器件非線性模型完成電路優(yōu)化。應(yīng)用該方法,本文對220GHz分諧波混頻器電路進(jìn)行了優(yōu)化,在仿真噪聲性能時,提出了一種引入外加噪聲源來等效熱電子噪聲的方法。本文構(gòu)建實(shí)驗(yàn)平臺開展了實(shí)驗(yàn)研究,實(shí)驗(yàn)結(jié)果表明,該混頻器在188-244GHz頻帶內(nèi),雙邊帶等效噪聲溫度小于1500K,雙邊帶變頻損耗小于10dB,實(shí)驗(yàn)結(jié)果與仿真預(yù)測吻合較好,驗(yàn)證了二極管建模以及電路優(yōu)化方法的有效性。(2)太赫茲頻段二倍頻技術(shù)。頻率倍增是產(chǎn)生太赫茲頻率信號的一種重要技術(shù)途徑,二倍頻器是組成固態(tài)太赫茲信號源的關(guān)鍵電路之一。從變?nèi)荻䴓O管工作機(jī)理入手,本文通過深入的理論研究,基于理論推導(dǎo),討論了變?nèi)荻䴓O管參數(shù)對二倍頻性能的影響,分析了設(shè)計(jì)變?nèi)荻䴓O管時需要考慮的主要參數(shù)。針對190GHz和180GHz兩個二倍頻器的特定電路性能要求,本文建立了變?nèi)荻䴓O管倍頻性能分析模型,定量分析了變?nèi)荻䴓O管參數(shù)對倍頻性能的影響,設(shè)計(jì)了兩個二倍頻器的變?nèi)荻䴓O管,并完成了二極管流片。利用本文提出的電路優(yōu)化方法對二倍頻器進(jìn)行了優(yōu)化,并構(gòu)建實(shí)驗(yàn)平臺開展了實(shí)驗(yàn)研究。實(shí)驗(yàn)結(jié)果表明,190GHz二倍頻器輸出頻帶為190-198GHz,最大可承受350mW的輸入功率;當(dāng)輸入功率為200mW時,在193GHz處獲得最大倍頻效率8%,輸出功率達(dá)到16mW;在該頻點(diǎn)處當(dāng)輸入功率為350mW時,輸出功率為24.12mW,倍頻效率為6.89%。180GHz二倍頻器在輸出頻率為173-184GHz的頻帶內(nèi),當(dāng)輸入功率為100mW時,倍頻效率大于10%,在183GHz處獲得最大倍頻效率15.5%;在該頻點(diǎn)處當(dāng)輸入功率為200mW時,輸出功率為24.17mW,倍頻效率為12.1%。實(shí)驗(yàn)結(jié)果與仿真預(yù)測吻合較好,驗(yàn)證了變?nèi)荻䴓O管建模、器件設(shè)計(jì)以及電路優(yōu)化方法的有效性。(3)太赫茲高速無線通信技術(shù)。在關(guān)鍵電路研究取得突破的基礎(chǔ)上,本文開展了太赫茲無線通信技術(shù)研究,構(gòu)建了 120GHz無線通信原理驗(yàn)證系統(tǒng)和220GHz實(shí)驗(yàn)驗(yàn)證系統(tǒng)。120GHz原理驗(yàn)證系統(tǒng)實(shí)現(xiàn)了碼速率高達(dá)12.5Gbit/s的無線數(shù)據(jù)傳輸,驗(yàn)證了太赫茲波應(yīng)用于無線通信的帶寬優(yōu)勢。220GHz實(shí)驗(yàn)驗(yàn)證系統(tǒng)在室外200m的通信距離上,實(shí)現(xiàn)了碼速率為3.52Gbit/s的高速無線數(shù)據(jù)傳輸,傳輸誤碼率為 1.92×10-6。通過本文的研究,展現(xiàn)出太赫茲波用于高速無線通信的巨大潛力,也驗(yàn)證了太赫茲無線通信未來走向?qū)嶋H應(yīng)用的可行性,為未來開發(fā)太赫茲頻率資源作為新的無線通信頻段奠定了重要的理論和技術(shù)基礎(chǔ)。
[Abstract]:The terahertz wave refers to the electromagnetic wave between 100GHz and 10THz. The electromagnetic spectrum is in a special position between the traditional electronics and the photonics research bands, and the research and exploitation of it in the past are relatively small. With the rapid development of wireless communication, the existing spectrum resources have become increasingly scarce and the wireless communication is developed. The new frequency band has gradually become a consensus to solve this problem, and there are a large number of undeveloped spectrum resources in the terahertz band, making the terahertz frequency suitable for the new band of future wireless communication. In many technical ways, the wireless communication system is realized by the technology of solid-state electronics. The possibility of integration is of great significance for the development of the terahertz wireless communication system. This paper focuses on the development of the solid-state terahertz high speed wireless communication technology and the realization of the wireless communication system as traction. The two key circuits (harmonic mixer and two frequency doubler), which constitute the terahertz wireless system, are deeply studied. In the breakthrough of key circuit, the terahertz wireless communication system is constructed and the high speed wireless data transmission experiment is successfully carried out. The main contents of this paper include the following three aspects: (1) the terahertz frequency division harmonic mixing technology. The function of frequency conversion in the wireless system is realized by the harmonic mixer in the wireless system, and the terahertz band lacks the solid-state amplifier in the terahertz frequency band. This key circuit is directly related to the overall performance of the system. This paper, starting with the physical mechanism of the Schottky barrier diode, studies the equivalent circuit model of the mixer diode, the noise model and the modeling method of the three-dimensional electromagnetic model, and analyzes the diode parameters and the parasitic parameters of the packaging. In order to improve the efficiency of circuit optimization, a circuit optimization method is proposed to improve the efficiency of circuit optimization. The basic idea of this method is to find the best working state of the nonlinear device and make the device achieve the best working condition. The impedance condition required to satisfy the impedance condition is to meet the impedance condition as the target. The matching network is optimized by S parameters. The circuit optimization is completed with the nonlinear model of the device after the matching network is determined. This method is used to optimize the 220GHz subharmonic mixer circuit. In the simulation noise performance, a kind of added noise source is introduced to be equivalent. The experimental results show that the mixer is in the 188-244GHz frequency band, the equivalent noise temperature of the bilateral band is less than 1500K, the bilateral band frequency loss is less than 10dB, the experimental results are in good agreement with the simulation prediction, and the effectiveness of the diode modeling and the circuit optimization method is verified. (2) Terahertz frequency two frequency doubling technology. Frequency multiplication is an important technical way to produce terahertz frequency signal. The two frequency doubler is one of the key circuits to make up the solid terahertz signal source. Starting with the working mechanism of the varactor diode, this paper has discussed the parameter of the varactor diode to two times on the basis of theoretical research and theoretical deduction. With the influence of frequency performance, the main parameters to be considered when designing varactor diodes are analyzed. In view of the specific circuit performance requirements of the two two doubler of 190GHz and 180GHz, an analysis model of the varactor frequency doubling performance is established in this paper. The influence of the varactor parameters on the frequency doubling performance is quantitatively analyzed, and the variation capacity of the two two frequency doubler is designed. Diode, and complete the diode flow sheet. Using the circuit optimization method proposed in this paper, the two frequency doubler is optimized and the experimental platform is built. The experimental results show that the output frequency band of the 190GHz two frequency doubler is 190-198GHz, and the maximum input power of 350mW can be withstood. When the input power is 200mW, the maximum is obtained at 193GHz. The large frequency doubling efficiency is 8%, the output power is 16mW. When the input power is 350mW, the output power is 24.12mW and the frequency doubling efficiency is 6.89%.180GHz two frequency doubler in the frequency band of 173-184GHz. When the input power is 100mW, the frequency doubling efficiency is greater than 10%, and the maximum frequency doubling efficiency is 15.5% at 183GHz. When the input power is 200mW, the output power is 24.17mW, the frequency doubling efficiency is 12.1%., and the experimental results are in good agreement with the simulation prediction. The validity of the varactor modeling, the device design and the circuit optimization method is verified. (3) the terahertz high-speed wireless communication technology. On the basis of the breakthrough in the key circuit research, the terahertz wireless communication is carried out in this paper. Communication technology research, construction of the 120GHz wireless communication principle verification system and the 220GHz experimental verification system.120GHz principle verification system to realize the wireless data transmission with the code rate up to 12.5Gbit/s, verify the bandwidth advantage of the terahertz wave used in the wireless communication.220GHz experimental verification system in the outdoor 200m communication distance, the implementation of the code The rate of 3.52Gbit/s is high speed wireless data transmission, the transmission error rate is 1.92 x 10-6. through this paper, which shows the great potential of the terahertz wave used in high-speed wireless communication. It also validates the feasibility of the terahertz wireless communication in the future to the practical application. It lays the foundation for the development of the terahertz frequency resources as a new wireless communication band in the future. An important theoretical and technical basis has been set up.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TN92
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蔣均;何月;王成;劉杰;田遙嶺;張健;鄧賢進(jìn);;基于Schottky二極管和Hammer-Head濾波器0.67THz二次諧波混頻器[J];紅外與毫米波學(xué)報(bào);2016年04期
2 趙鑫;蔣長宏;張德海;孟進(jìn);姚常飛;;基于肖特基二極管的450 GHz二次諧波混頻器[J];紅外與毫米波學(xué)報(bào);2015年03期
3 姚常飛;周明;羅運(yùn)生;寇亞男;;基于倒扣技術(shù)的190~225GHz肖特基二極管高效率二倍頻器(英文)[J];紅外與毫米波學(xué)報(bào);2015年01期
4 張勇;盧秋全;劉偉;李理;徐銳敏;;基于肖特基勢壘二極管三維電磁模型的220GHz三倍頻器[J];紅外與毫米波學(xué)報(bào);2014年04期
5 姚建銓;鐘凱;徐德剛;;太赫茲空間應(yīng)用研究與展望[J];空間電子技術(shù);2013年02期
6 姚常飛;周明;羅運(yùn)生;王毅剛;許從海;;基于肖特基平面二極管的150GHz和180GHz固定調(diào)節(jié)式倍頻源(英文)[J];紅外與毫米波學(xué)報(bào);2013年02期
7 安大偉;于偉華;呂昕;;基于石英基片的二毫米波段二次諧波混頻器設(shè)計(jì)和研制[J];紅外與毫米波學(xué)報(bào);2011年01期
8 張勇;林元根;;185GHz固態(tài)二倍頻器研究[J];電子科技大學(xué)學(xué)報(bào);2010年02期
9 劉盛綱;鐘任斌;;太赫茲科學(xué)技術(shù)及其應(yīng)用的新發(fā)展[J];電子科技大學(xué)學(xué)報(bào);2009年05期
10 姚建銓;遲楠;楊鵬飛;崔海霞;汪靜麗;李九生;徐德剛;丁欣;;太赫茲通信技術(shù)的研究與展望[J];中國激光;2009年09期
相關(guān)博士學(xué)位論文 前2條
1 趙偉;毫米波及太赫茲混頻技術(shù)研究[D];電子科技大學(xué);2015年
2 楊曉帆;基于平面肖特基二極管的太赫茲分諧波混頻器研究[D];電子科技大學(xué);2012年
相關(guān)碩士學(xué)位論文 前4條
1 周揚(yáng)帆;高性能太赫茲無源器件研究[D];電子科技大學(xué);2015年
2 任玉興;毫米波倍頻源技術(shù)研究[D];電子科技大學(xué);2014年
3 高意;X波段高增益放大鏈路研究[D];電子科技大學(xué);2014年
4 陳哲;太赫茲頻段分諧波混頻器研究[D];電子科技大學(xué);2011年
,本文編號:1940240
本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1940240.html