天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 信息工程論文 >

28GHz多接收器MIMO系統(tǒng)低復(fù)雜度混合波束形成

發(fā)布時(shí)間:2018-05-25 19:07

  本文選題:毫米波 + 混合波束形成 ; 參考:《哈爾濱工業(yè)大學(xué)》2017年碩士論文


【摘要】:目前的無(wú)線服務(wù)已經(jīng)飽和,幾乎所有6GHz以下的頻譜以及對(duì)高速無(wú)線通信的廣泛增長(zhǎng)的需求,特別是與沉浸式多媒體應(yīng)用程序正在進(jìn)入智能設(shè)備(例如智能手機(jī),平板電腦,筆記本電腦等)。空間視頻流量占移動(dòng)流量的61%,預(yù)計(jì)未來(lái)幾年將會(huì)快速增長(zhǎng)。全高清視頻的豐富性通過(guò)社交媒體分享,超高清和3D視頻內(nèi)容將會(huì)在未來(lái)發(fā)生,這促使研究人員深入研究了毫米波(mm波)頻帶作為經(jīng)典樂(lè)隊(duì)的替代品,并將廣泛使用的帶寬特權(quán)作為第五代無(wú)線通信系統(tǒng)及其以外即將到來(lái)的需求的有效解決方案。毫米波頻段特別是28GHz,我們的研究興趣仍然處于研究階段。作為下一代無(wú)線通信的解決方案,毫米波頻帶中的一個(gè)顯著的通道傳播特性是通過(guò)頻帶的巨大傳輸信號(hào)路徑損耗。以前的研究已經(jīng)顯示了毫米波的通道測(cè)量結(jié)果,其中與波段頻譜差比傳統(tǒng)的蜂窩系統(tǒng)頻帶更差的傳播損耗特性。而且,它們也已經(jīng)顯示出基于波束形成技術(shù)的無(wú)線通信的可能性,其通過(guò)小波長(zhǎng)的毫米波,對(duì)于視徑(Lo S)和非視徑(NLo S)發(fā)射機(jī)和接收機(jī)傳播而變得更容易實(shí)現(xiàn)。已經(jīng)證實(shí),當(dāng)我們從1.8GHz跳到28GHz再到60GHz頻帶時(shí),產(chǎn)生超過(guò)20d B的附加路徑損耗,并且隨著我們的差距正在迅速增加。此外,由于頻帶變化情況,NLo S路徑損耗大于Lo S損耗。因此,為了利用毫米波頻帶中較小的波長(zhǎng),28GHz頻段是更好的選擇。但是全數(shù)字28GHz系統(tǒng)的功耗和高成本的局限性使得它不太可能利用現(xiàn)有的半導(dǎo)體技術(shù)來(lái)實(shí)現(xiàn),所以應(yīng)該采用具有可控波束的混合數(shù)字模擬波束成形來(lái)使復(fù)雜度小型化。因此,由于社交網(wǎng)絡(luò)的革命性爆炸和用戶對(duì)高速無(wú)線通信的巨大需求,更高數(shù)據(jù)速率的需求正在迅速增加,毫米波頻段可成為下一代的解決方案的無(wú)線通信的超越。選擇28 GHz頻段的基本目標(biāo)是寬帶無(wú)用和信道散布性。在較高頻率的無(wú)線通信環(huán)境如毫米波,天線陣列成為重要的組成部分。因此,天線陣列的正常應(yīng)用是多個(gè)接收機(jī)的同時(shí)傳輸。但是,毫米波系統(tǒng)中的主要問(wèn)題是硬件限制,從而使經(jīng)典低頻帶上的多接收機(jī)MIMO波束成形技術(shù)的實(shí)現(xiàn)變得困難。將各種數(shù)據(jù)流復(fù)用到各種接收機(jī)需要應(yīng)用一些波束形成形式來(lái)產(chǎn)生發(fā)射的信號(hào),并且對(duì)波束形成矩陣的條目具有優(yōu)選的控制。但是,這種波束成形通常處于傳統(tǒng)低頻系統(tǒng)的基帶階段。不幸的是,組合信號(hào)組件的系統(tǒng)成本,復(fù)雜性和功率耗盡使得全數(shù)字基帶波束形成器不利于當(dāng)前的制造技術(shù)。此外,波束形成矩陣的設(shè)計(jì)通常基于幾乎完美的信道狀態(tài)信息,這在較小的波長(zhǎng)系統(tǒng)中難以獲得,這是因?yàn)楫?dāng)在系統(tǒng)中使用大量天線時(shí)需要巨大的訓(xùn)練開銷,波束形成后的小信噪比(SNR)。因此,多接收機(jī)波束成形的新穎算法考慮了毫米波系統(tǒng)的硬件約束。并且需要開發(fā)低復(fù)雜度的毫米波系統(tǒng)。為了改善28 GHz頻段的鏈路預(yù)算,我們開發(fā)了一種用于下行鏈路多接收機(jī)28GHz系統(tǒng)的雙相低復(fù)雜度混合模數(shù)數(shù)字波束成形,而我們假定在接收機(jī)側(cè)進(jìn)行模擬信號(hào)合并。建議的算法可以歸納如下:波束形成器和組合器之間的一般耦合已經(jīng)被使用,但是額外的挑戰(zhàn)是使用不同約束的波束形成操作的決斗不同的域。因此,我們引用所提出的算法,我們必須參考將波束成形計(jì)算分為兩個(gè)階段的主要思想,在第一階段,發(fā)射機(jī)的RF波束形成器和接收機(jī)的RF組合器被聯(lián)合設(shè)計(jì)最大化每個(gè)接收機(jī)的所需信號(hào)功率,忽略接收機(jī)之間的干擾。在第二階段,發(fā)射機(jī)的數(shù)字波束形成器被設(shè)計(jì)成處理多接收機(jī)干擾。因此,在第一階段,發(fā)射機(jī)和每個(gè)單個(gè)接收機(jī)設(shè)計(jì)RF波束成形和組合向量,以最大化所引用接收機(jī)的期望信號(hào)功率,并忽略其他接收機(jī)的干擾。由于這是典型的單接收機(jī)RF波束成形設(shè)計(jì)問(wèn)題,所以對(duì)于不需要顯式信道估計(jì)并且具有較低訓(xùn)練開銷的單接收機(jī)系統(tǒng),改進(jìn)的有效波束訓(xùn)練算法可用于設(shè)計(jì)射頻波束形成組合向量。在第二階段,有效信道將由發(fā)射機(jī)和接收機(jī)的系統(tǒng)號(hào)進(jìn)行訓(xùn)練。每個(gè)有效信道向量的維數(shù)小于原始信道矩陣。這不是有效信道具有較大發(fā)射機(jī)陣列的算法的情況,因此每個(gè)接收機(jī)使用碼本對(duì)其有效信道進(jìn)行量化,量化信道向量的索引將以已知位數(shù)反饋給發(fā)射機(jī)。最后,發(fā)射機(jī)設(shè)計(jì)了基于量化信道的零強(qiáng)制數(shù)字波束形成器。由于窄波束形成和28GHz信道的稀疏性,有效的MIMO信道有望進(jìn)行有條件的調(diào)整,這使得采用簡(jiǎn)單的多接收機(jī)數(shù)字波束成形策略,如能夠?qū)崿F(xiàn)接近最佳性能的零強(qiáng)制。在單接收器毫米波系統(tǒng)之前,對(duì)模擬和數(shù)字波束形成器的單獨(dú)和聯(lián)合設(shè)計(jì)進(jìn)行了調(diào)查。他們考慮了單個(gè)接收機(jī)單流MIMO-OFDM系統(tǒng),其中模擬和數(shù)字波束形成器被依次設(shè)計(jì)為對(duì)不同頻率子載波之間的所需接收信號(hào)強(qiáng)度或頻譜效率應(yīng)用最大化;蛘,模擬和數(shù)字波束形成器被聯(lián)合設(shè)計(jì)以最大化單接收機(jī)系統(tǒng)的速率。在本論文中,已經(jīng)考慮了不同的設(shè)置,也就是多接收機(jī)下行鏈路傳輸。因此,我們工作中混合模擬數(shù)字波束成形的目標(biāo)與以前的工作不同,因?yàn)槲覀冞需要管理多接收機(jī)干擾。這個(gè)解決方案使我們完全不同的分析。所提出的算法將發(fā)射機(jī)混合波束形成器和接收機(jī)的模擬組合器設(shè)計(jì)成具有反饋開銷和小的訓(xùn)練。所提出的算法的性能分析已經(jīng)采用兩種情況,在單路徑信道和具有大量發(fā)射機(jī)和接收機(jī)天線的多路徑信道和具有兩種類型的均勻陣列,均勻線性陣列(ULA)和均勻矩陣(URA)。波束形成向量模擬和數(shù)字已經(jīng)從量化的碼本中選擇,因此與混合波束形成的性能相比,與僅模擬波束形成和所有數(shù)字塊對(duì)角化算法相比,由于聯(lián)合量化和視覺(jué)的速率損失的表征系統(tǒng)。為了能夠分析混合波束形成,我們必須考慮到模擬和數(shù)字波束形成器之間的耦合,因此性能分析將會(huì)非常顯著。因此,我們對(duì)提出的算法的性能進(jìn)行了兩個(gè)案例研究,即單路徑信道的情況和假設(shè)大量天線的多路徑信道的情況。這些情況是特別感興趣的,因?yàn)?8GHz信道可能是稀疏的,即僅存在少數(shù)路徑,并且發(fā)射機(jī)和接收機(jī)都需要應(yīng)用大的天線陣列以具有有效的接收功率。此外,這些特殊情況的分析將對(duì)本文中已經(jīng)展示的更一般的設(shè)置中的所提出的算法的性能給出有用的見解。我們假設(shè)完全了解有效信道并假定RF射束向?qū)У慕嵌瓤梢匀∵B續(xù)值,分析所提出的算法的總和。本論文改進(jìn)了低復(fù)雜度功能的雙相混合模數(shù)數(shù)字波束成形算法,用于下行鏈路多接收機(jī)毫米波系統(tǒng)。所提出的算法在具有可用于發(fā)射機(jī)的陣列的已知尺寸和具有有限反饋的接收機(jī)信道之間的假設(shè)下更為通用。我們可以簡(jiǎn)要列出本論文的主要貢獻(xiàn)如下:改進(jìn)用于多接收機(jī)28GHz系統(tǒng)的混合發(fā)射機(jī)波束成形和接收機(jī)組合的算法。我們假設(shè)接收機(jī)僅使用模擬組合器,而在發(fā)射機(jī)處實(shí)現(xiàn)混合模擬數(shù)字波束形成器,其中在所提出的系統(tǒng)中已經(jīng)使用RF鏈的數(shù)量等于接收機(jī)的數(shù)量或更少的接收機(jī)數(shù)量。所提出的算法的設(shè)計(jì)旨在減少反饋開銷和訓(xùn)練,以獲得更接近的結(jié)果給無(wú)約束的解決方案。在單路徑信道的假設(shè)下分析混合波束成形算法性能,然后假設(shè)在發(fā)射機(jī)和接收機(jī)側(cè)都具有大尺寸陣列幾何形狀的多路徑信道,這被稱為28 GHz系統(tǒng)的有利設(shè)計(jì);旌狭炕a本的特征在于平均速率損失,與所有數(shù)字無(wú)約束算法和模擬波束成形解決方案相比,可以區(qū)分混合波束形成的大增益。在本論文中,混合波束成形包括模擬和數(shù)字組合處理,受組合信號(hào)硬件和全射頻功率消耗的啟發(fā)。所以安排如下:系統(tǒng)架構(gòu)和渠道模型的描述在第2章。在第3章中,多接收機(jī)混合波束成形組合的總和速率計(jì)算問(wèn)題已經(jīng)通過(guò)訓(xùn)練和反饋開銷的關(guān)聯(lián)來(lái)形成。然后描述了所提出的低復(fù)雜度雙相混合波束形成組合算法。第4章包括所提出的算法的性能分析,在具有非常大數(shù)量的天線的單路徑信道和多路徑信道中,假設(shè)連續(xù)移相器角度。第5章演示了兩種不同分析案例研究中所提出的算法與模擬波束成形和塊對(duì)角化算法全數(shù)字(無(wú)約束)的比較。并通過(guò)使用兩種類型的天線陣列ULA和URA。所提出的混合波束成形算法表明,即使具有相對(duì)較小的訓(xùn)練和反饋開銷也表現(xiàn)出良好的性能,我們確信我們感謝28 GHz信道的備用性質(zhì),并且已經(jīng)在發(fā)射機(jī)和接收機(jī)中部署了大量的天線。在本論文中,已經(jīng)提出了用于下行鏈路多接收機(jī)28GHz系統(tǒng)的雙相低復(fù)雜度混合模數(shù)數(shù)字波束成形算法,其利用大量天線和28GHz頻帶的稀疏信道特性。對(duì)于兩個(gè)案例研究,性能分析首先被考慮,當(dāng)信道是單路徑時(shí),第二個(gè)是當(dāng)通道是具有非常大數(shù)量的天線的多路徑時(shí)被部署的。對(duì)于上述情況,我們演示了所提出的雙相混合波束成形算法的漸近最優(yōu)性,以及僅針對(duì)模擬波束成形和全數(shù)字無(wú)約束波束成形的增益。仿真結(jié)果表明,即使已經(jīng)部署了大尺寸陣列,也需要多接收機(jī)28 GHz系統(tǒng)中的干擾管理。利用小信道的反饋,對(duì)聯(lián)合模擬數(shù)字碼本量化的速率損失平均值進(jìn)行了數(shù)值模擬分析。這些結(jié)果表明混合波束形成的增益對(duì)于RF角度量化不是很敏感。對(duì)于數(shù)字波束形成層來(lái)說(shuō),為了在僅模擬波束成形上保持合理的波束成形增益,具有很好的量化是重要的。性能分析和仿真結(jié)果表明,所提出的模型對(duì)于僅模擬波束成形提供了更高的總和速率,并且通過(guò)相對(duì)小的碼本幾乎實(shí)現(xiàn)了所有數(shù)字系統(tǒng)的塊對(duì)角化的相同方法。
[Abstract]:Currently, wireless services are saturated, almost all of the spectrum below 6GHz and the growing demand for high-speed wireless communications, especially with immersive multimedia applications are entering smart devices (such as smartphones, tablets, laptops, etc.). Space video traffic accounts for 61% of mobile traffic and is expected to come in the next few years. The richness of Full HD video is shared through social media, and the content of ultra high definition and 3D video will occur in the future, prompting researchers to study the millimeter wave (mm wave) band as a substitute for the classic band and to use wide bandwidth privileges as the fifth generation wireless communication system and its coming. An effective solution for demand. The millimeter wave band, especially the 28GHz, is still at the stage of research. As a solution to the next generation of wireless communications, a significant channel propagation characteristic in the millimeter wave band is the path loss of the huge transmission signal through the band. Previous studies have shown the channel of millimeter wave. The measurement results, in which the frequency difference between the band spectrum and the band spectrum is worse than the traditional cellular frequency band, has also shown the possibility of wireless communication based on the beamforming technology, which is easier to be realized through the small wavelength millimeter wave propagation for the Lo S and the NLo S transmitters and receivers. It has been proved that when we jump from 1.8GHz to 28GHz and then to the 60GHz band, the additional path loss over 20d B is generated and is increasing with our gap. In addition, the NLo S path loss is greater than the Lo S loss due to the frequency band variation. Therefore, the 28GHz band is a better choice for the smaller wavelengths in the millimeter wave band. However, the power and high cost limitations of the full digital 28GHz system make it unlikely to use the existing semiconductor technology, so a hybrid digital analog beamforming with a controllable beam should be used to miniaturize the complexity. Therefore, the revolutionary explosion of social networks and the huge demand for high-speed wireless communication by users The demand for higher data rates is increasing rapidly, and millimeter wave bands can become the surpassing of wireless communications in the next generation of solutions. The basic goal of selecting 28 GHz bands is broadband uselessness and channel dispersion. Antenna array becomes an important component in a high frequency wireless communication environment such as millimeter waves. Therefore, antenna arrays The normal application is the simultaneous transmission of multiple receivers. However, the main problem in the millimeter wave system is the hardware limitation, which makes it difficult to realize the multi receiver MIMO beamforming technology on the classic low frequency band. Moreover, the beamforming matrix has a preferred control. However, the beamforming is usually in the baseband stage of the traditional low frequency system. Unfortunately, the system cost, complexity and power depletion of the combined signal components make the full digital baseband beamformer detrimental to the current manufacturing technology. In addition, the design of the beamforming matrix It is usually based on almost perfect channel state information, which is difficult to obtain in a smaller wavelength system because it requires huge training overhead and small signal to noise ratio (SNR) after the use of a large number of antennas in the system. Therefore, a novel algorithm for multi receiver beamforming takes into account the hardware constraints of the millimeter wave system. And it is necessary to take into account the hardware constraints of the millimeter wave system. In order to improve the low complexity millimeter wave system. In order to improve the link budget of the 28 GHz band, we developed a dual phase low complexity hybrid analog digital beamforming for the downlink multi receiver 28GHz system. We assume that the analog signal is merged on the receiver side. The proposed algorithm can be summarized as follows: beamformer and The general coupling between the combiners has been used, but the additional challenge is to use the different domain of the duel of the beamforming operation with different constraints. Therefore, we refer to the proposed algorithm. We must refer to the main idea of dividing the beamforming calculation into two stages, in the first stage, the RF beamformer and the receiver of the transmitter. The RF combiner is jointly designed to maximize the required signal power for each receiver and ignore the interference between the receivers. In the second stage, the transmitter's digital beamformer is designed to deal with multiple receiver interference. Therefore, in the first stage, the transmitter and each individual receiver design the RF beamforming and combination vector to maximize the The desired signal power of the receiver is referenced and the interference of other receivers is ignored. Since this is a typical single receiver RF beamforming design problem, the improved effective beam training algorithm can be used to design the combination direction of the radio frequency beamforming for a single receiver system that does not need explicit channel estimation and has low training overhead. In the second stage, the effective channel will be trained by the system number of the transmitter and receiver. The dimension of each effective channel vector is less than the original channel matrix. This is not the case of an efficient channel with a larger array of transmitters. Therefore, each receiver uses the codebook to quantify its effective channel and quantify the channel vector cable. The lead will be fed back to the transmitter with known digits. Finally, the transmitter designs a zero forced digital beamformer based on a quantized channel. The effective MIMO channel is expected to be conditional due to the narrow beam forming and the sparsity of the 28GHz channel, which makes it possible to use a simple multi receiver digital beamforming strategy, such as to achieve close proximity. Zero coercion for optimal performance. Before a single receiver millimeter wave system, a single and joint design of analog and digital beamformers is investigated. They consider a single receiver single flow MIMO-OFDM system, in which the analog and digital beamformers are designed in turn to receive the required signal intensity between different frequency subcarriers. Or the application of spectral efficiency is maximized. Or, analog and digital beamformers are jointly designed to maximize the rate of single receiver systems. In this paper, different settings have been taken into account, that is, multi receiver downlink transmission. Therefore, the target of hybrid analog beamforming is different from previous work in our work. We also need to manage multi receiver interference. This solution makes us completely different. The proposed algorithm designs the analog combiner of the transmitter hybrid beamformer and the receiver into a feedback overhead and small training. The performance analysis of the proposed algorithm has been used in two cases, in the single path channel and in the tool. A multipath channel with a large number of transmitter and receiver antennas and two types of uniform arrays, uniform linear array (ULA) and homogeneous matrix (URA). Beamforming vector simulation and numbers have been selected from the quantized codebook, thus compared with the performance of mixed beamforming and diagonalization with only simulated beamforming and all digital blocks. In comparison with the representation system of joint quantization and rate loss of vision. In order to be able to analyze hybrid beamforming, we have to consider the coupling between analog and digital beamformers, so the performance analysis will be very significant. Therefore, we have two case studies on the proposed algorithm, that is, single path channel. Conditions and assumptions about the multipath channel of a large number of antennas. These are particularly interesting because the 28GHz channel may be sparse, that is, only a few paths exist, and both the transmitter and receiver need to apply large antenna arrays to have effective receiving power. In addition, the analysis of these special cases will be shown in this article. We give a useful insight into the performance of the proposed algorithm in more general settings. We assume that the effective channel is fully understood and the point of view of the RF beam wizard can be taken as a continuous value, and the sum of the proposed algorithms is analyzed. This paper improves the dual phase mixed modulus digital beamforming algorithm of low complexity function for the downlink chain. The proposed algorithm is more general under the assumption between the known size of the array that can be used for the transmitter and the receiver channel with limited feedback. We can briefly list the main contributions of this paper as follows: improving the beamforming and receiving of the hybrid transmitter for the multi receiver 28GHz system. We assume that the receiver uses an analog combiner only to implement a hybrid analog digital beamformer at the transmitter, in which the number of RF chains already used in the proposed system is equal to the number of receivers or fewer receivers. The proposed algorithm is designed to reduce feedback overhead and training to obtain the results. A more close result is given to an unconstrained solution. The performance of the hybrid beamforming algorithm is analyzed under the assumption of a single path channel, and then a multi-path channel with large size array geometry is assumed on the transmitter and receiver side, which is called a favorable design of the 28 GHz system. The characteristic of the mixed quantization codebook is the average rate loss. As compared with all digital unconstrained algorithms and analog beamforming solutions, the large gain of mixed beamforming can be distinguished. In this paper, hybrid beamforming includes analog and digital combination processing, inspired by the combined signal hardware and full radio frequency power consumption. In the second chapter, in the third chapter, the total rate calculation problem of multi receiver hybrid beamforming combination has been formed by the association of training and feedback overhead. Then the proposed low complexity biphasic hybrid beamforming algorithm is described. The fourth chapter includes the performance analysis of the proposed algorithm, in a very large number of antennas. In the path channel and the multipath channel, the fifth chapter demonstrates the comparison between the algorithm proposed in two different analysis case studies and the analog beamforming and block diagonalization algorithm (unconstrained). The hybrid beamforming algorithm proposed by the two types of antenna arrays ULA and URA. shows that The relatively small training and feedback overhead also shows good performance. We are convinced that we are grateful for the reserve properties of the 28 GHz channel and have already deployed a large number of antennas in the transmitter and receiver. In this paper, the dual phase low complexity mixed modulus number for the downlink multiple receiver 28GHz system has been proposed in this paper. A word beamforming algorithm, which takes advantage of the sparse channel characteristics of a large number of antennas and 28GHz bands. For two case studies, the performance analysis is first considered, when the channel is a single path and the second is deployed when the channel is a multipath with a very large number of antennas. For the above case, we demonstrate the proposed biphase mixing. The asymptotic optimality of the beamforming algorithm and only for the gain of analog beamforming and all digital unconstrained beamforming. Simulation results show that, even if a large size array has been deployed, interference management in a multi receiver 28 GHz system is also required. The results show that the gain of the mixed beamforming is not very sensitive to the RF angle quantization. For digital beamforming, it is important to have good quantization in order to maintain a reasonable beamforming gain in the only beamforming. The model provides a higher total sum rate for only simulated beamforming, and the same method of diagonalization of all digital systems is almost realized through relatively small codebooks.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN919.3

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 ;接收機(jī)[J];電子科技文摘;2002年01期

2 ;接收機(jī)[J];電子科技文摘;2002年02期

3 李和委,張麗娟;低噪聲接收機(jī)模塊[J];半導(dǎo)體技術(shù);2004年08期

4 蔡桂祥;薛質(zhì);侯育煒;;雙頻實(shí)時(shí)動(dòng)態(tài)GPS接收機(jī)的設(shè)計(jì)與研制[J];光學(xué)儀器;2007年02期

5 關(guān)福宏;王闖;田為中;錢蓉;孫曉瑋;;直接檢波式毫米波接收機(jī)研制[J];紅外與毫米波學(xué)報(bào);2007年02期

6 齊英鑫;;高頻率接收機(jī)的研究及電路的設(shè)計(jì)[J];科技信息;2012年33期

7 青野芳民;曹鐵生;;8-12GHz、輸出1瓦的砷化鎵場(chǎng)效應(yīng)晶體管放大器[J];國(guó)外艦船技術(shù).雷達(dá)與對(duì)抗;1982年11期

8 何冬婭;;“6~12GHz衰減標(biāo)準(zhǔn)裝置”技術(shù)鑒定會(huì)在京召開[J];宇航計(jì)測(cè)技術(shù);1985年05期

9 曹沖;;星載GPS接收機(jī)的特殊要求問(wèn)題[J];電波與天線;1996年05期

10 王正明,董紹武,任燕,漆溢,劉春俠,王改霞;CSAO多通道GPS/GLONASS接收機(jī)試運(yùn)行結(jié)果[J];陜西天文臺(tái)臺(tái)刊;2001年02期

相關(guān)會(huì)議論文 前8條

1 滿江虹;武玉強(qiáng);初學(xué)導(dǎo);;MIMO系統(tǒng)的加權(quán)一步超前模型參考自適應(yīng)控制[A];1997中國(guó)控制與決策學(xué)術(shù)年會(huì)論文集[C];1997年

2 岳富占;梁志國(guó);呂鐵軍;仇躍華;;星載GPS接收機(jī)全鏈路分析及仿真方法研究[A];第三屆中國(guó)衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集——S06北斗/GNSS測(cè)試評(píng)估技術(shù)[C];2012年

3 呼嘯;;基于欠抽樣技術(shù)的軟件單邊接收機(jī)的介紹[A];2005全國(guó)有色金屬自動(dòng)化技術(shù)與應(yīng)用學(xué)術(shù)年會(huì)論文集[C];2005年

4 袁景中;蔣永紅;;18GHz介質(zhì)振蕩器[A];2003'全國(guó)微波毫米波會(huì)議論文集[C];2003年

5 曹頌華;李元;;超寬帶2-18GHz斜率校正器[A];1995年全國(guó)微波會(huì)議論文集(下冊(cè))[C];1995年

6 鐘衛(wèi);徐友云;蔡躍明;;多用戶MIMO系統(tǒng)中的一種基于博弈論的資源優(yōu)化[A];通信理論與信號(hào)處理新進(jìn)展——2005年通信理論與信號(hào)處理年會(huì)論文集[C];2005年

7 陳帥;杜國(guó)平;薄煜明;萬(wàn)鵬;張曉光;溫聊梅;;區(qū)域定位系統(tǒng)彈載接收機(jī)硬件設(shè)計(jì)[A];第二屆中國(guó)衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集[C];2011年

8 賀志強(qiáng);田寶玉;吳偉陵;;時(shí)變信道下MIMO系統(tǒng)自適應(yīng)調(diào)制與功率分配的算法性能分析[A];現(xiàn)代通信理論與信號(hào)處理進(jìn)展——2003年通信理論與信號(hào)處理年會(huì)論文集[C];2003年

相關(guān)博士學(xué)位論文 前2條

1 吳文峰;低先驗(yàn)信息依賴性的穩(wěn)健波束形成技術(shù)及其應(yīng)用研究[D];哈爾濱工程大學(xué);2014年

2 王沖;60GHz硅基毫米波接收機(jī)關(guān)鍵技術(shù)研究與芯片設(shè)計(jì)[D];東南大學(xué);2016年

相關(guān)碩士學(xué)位論文 前10條

1 諾曼(Mohammed Noaman Saleh Rabee);28GHz多接收器MIMO系統(tǒng)低復(fù)雜度混合波束形成[D];哈爾濱工業(yè)大學(xué);2017年

2 王云;基于SWIPT系統(tǒng)的聯(lián)合波束形成與人工噪聲設(shè)計(jì)[D];哈爾濱工業(yè)大學(xué);2017年

3 王責(zé)越;三維傅里葉變換波束形成[D];中國(guó)艦船研究院;2017年

4 肖姍姍;Ka波段電磁波束調(diào)控表面特性研究[D];哈爾濱工業(yè)大學(xué);2017年

5 肖志鵬;大規(guī)模MIMO系統(tǒng)的漸近信干比與功率增益研究[D];華中師范大學(xué);2015年

6 馬娌娜;多用戶MIMO系統(tǒng)能效問(wèn)題的研究[D];鄭州大學(xué);2015年

7 戴敏;大規(guī)模MIMO系統(tǒng)中上行信道檢測(cè)方法的改進(jìn)與應(yīng)用[D];南京郵電大學(xué);2015年

8 陳潔;大規(guī)模無(wú)線光MIMO系統(tǒng)的信道非互易補(bǔ)償矯正模型和天線選擇研究[D];吉林大學(xué);2016年

9 劉越;基于張量分解的MIMO系統(tǒng)半盲信道估計(jì)算法研究[D];鄭州大學(xué);2016年

10 李臣陽(yáng);大規(guī)模MIMO系統(tǒng)低復(fù)雜度信道估計(jì)[D];鄭州大學(xué);2016年



本文編號(hào):1934332

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/xinxigongchenglunwen/1934332.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e25ff***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
小草少妇视频免费看视频| 亚洲欧美日本视频一区二区| 97人妻人人揉人人躁人人| 四季精品人妻av一区二区三区| 美女被啪的视频在线观看| 国产传媒免费观看视频| 午夜国产成人福利视频| 又黄又爽禁片视频在线观看| 亚洲天堂一区在线播放| 亚洲国产黄色精品在线观看| 精品欧美一区二区三久久| 毛片在线观看免费日韩| 亚洲欧美日韩综合在线成成| 97人摸人人澡人人人超碰| 高清一区二区三区不卡免费| 亚洲一区二区久久观看| 插进她的身体里在线观看骚| 国产日韩中文视频一区| 国产在线一区二区免费| 亚洲欧美黑人一区二区| 伊人久久青草地综合婷婷| 成人午夜在线视频观看| 国产女同精品一区二区| 麻豆视频传媒入口在线看| 一区二区三区人妻在线| 不卡在线播放一区二区三区| 国产福利在线播放麻豆| 国产国产精品精品在线| 国产成人亚洲精品青草天美| 精品日韩欧美一区久久| 国产成人精品国内自产拍| 视频一区二区三区自拍偷| 中文字幕有码视频熟女| 日韩特级黄片免费观看| 久久精品国产亚洲av麻豆尤物 | 亚洲精品国产主播一区| 精品一区二区三区中文字幕| 亚洲欧美日韩中文字幕二欧美| 国产精品大秀视频日韩精品| 国产精品白丝久久av| 亚洲欧美中文字幕精品|