受污染混沌信號(hào)的協(xié)同濾波降噪
發(fā)布時(shí)間:2018-04-10 18:36
本文選題:混沌信號(hào) + 協(xié)同濾波 ; 參考:《物理學(xué)報(bào)》2017年21期
【摘要】:根據(jù)混沌吸引子的自相似分形特性,提出了一種利用協(xié)同濾波重構(gòu)受污染混沌信號(hào)的降噪算法.所設(shè)計(jì)的降噪算法通過(guò)對(duì)相似片段的分組將一維混沌信號(hào)的降噪轉(zhuǎn)化為一個(gè)二維聯(lián)合濾波問(wèn)題;然后,在二維變換域用閾值法衰減噪聲;最后,通過(guò)反變換獲得原始信號(hào)的估計(jì).由于分組中的相似片段具有良好的相關(guān)性,與直接在一維變換域做閾值降噪相比,分組的二維變換能獲得原信號(hào)更稀疏的表示,更好地抑制噪聲.仿真結(jié)果表明,該算法對(duì)原始混沌信號(hào)的重構(gòu)精度和信噪比的提升都優(yōu)于小波閾值、局部曲線擬合等現(xiàn)有的混沌信號(hào)降噪方法,對(duì)相圖的還原質(zhì)量也更好.
[Abstract]:According to the self-similar fractal characteristics of chaotic attractors, a noise reduction algorithm using cooperative filtering to reconstruct contaminated chaotic signals is proposed.The proposed denoising algorithm converts the noise reduction of one-dimensional chaotic signals into a two-dimensional joint filtering problem by grouping similar segments. Then, the threshold method is used to attenuate the noise in the two-dimensional transform domain.The estimation of the original signal is obtained by inverse transformation.Because of the good correlation between the similar segments in the packet, compared with the threshold denoising in the one-dimensional transform domain, the two-dimensional transform of the packet can obtain the sparse representation of the original signal and suppress the noise better.Simulation results show that the proposed algorithm is superior to wavelet threshold in reconstruction accuracy and signal-to-noise ratio of the original chaotic signal. The existing noise reduction methods such as local curve fitting are also better for the restoration of phase diagram.
【作者單位】: 華南理工大學(xué)電子與信息學(xué)院;廣東技術(shù)師范學(xué)院電子與信息學(xué)院;
【基金】:國(guó)家自然科學(xué)基金(批準(zhǔn)號(hào):61372008) 廣東省科技計(jì)劃項(xiàng)目(批準(zhǔn)號(hào):20158010101006,2014A010103014)資助的課題~~
【分類號(hào)】:O415.5;TN911.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高躍清;黃進(jìn)燕;王磊;;混沌信號(hào)的主要測(cè)量特性分析[J];計(jì)算機(jī)與網(wǎng)絡(luò);2012年06期
2 黃錦旺;李廣明;馮久超;晉建秀;;一種無(wú)線傳感器網(wǎng)絡(luò)中的混沌信號(hào)重構(gòu)算法[J];物理學(xué)報(bào);2014年14期
3 韓建群,朱義勝;混沌信號(hào)相關(guān)維提取的一種改進(jìn)方法[J];電子與信息學(xué)報(bào);2005年06期
4 李亞安,徐德民,張效民;低信噪比混沌信號(hào)的維數(shù)計(jì)算[J];西北工業(yè)大學(xué)學(xué)報(bào);2002年03期
5 劉玉懷,馬軍,路軼群;利用混沌信號(hào)驅(qū)動(dòng)實(shí)現(xiàn)各子系統(tǒng)間的同步[J];物理學(xué)報(bào);1999年01期
6 王云才;錢建軍;;激光混沌信號(hào)相關(guān)法測(cè)距研究[J];深圳大學(xué)學(xué)報(bào)(理工版);2010年04期
7 趙小磊;馬s,
本文編號(hào):1732415
本文鏈接:http://sikaile.net/kejilunwen/wulilw/1732415.html
最近更新
教材專著