太赫茲無(wú)損檢測(cè)的多特征參數(shù)神經(jīng)網(wǎng)絡(luò)分析技術(shù)
發(fā)布時(shí)間:2018-03-15 22:20
本文選題:光譜學(xué) 切入點(diǎn):太赫茲時(shí)域光譜 出處:《光子學(xué)報(bào)》2017年04期 論文類型:期刊論文
【摘要】:提出一種基于太赫茲無(wú)損檢測(cè)的多特征參數(shù)神經(jīng)網(wǎng)絡(luò)分析技術(shù),用于分析耐高溫復(fù)合材料的粘貼質(zhì)量無(wú)損檢測(cè).采用抽片式方法設(shè)計(jì)了一種耐高溫復(fù)合材料的脫粘缺陷樣品,抽片厚度為0.1mm.采用太赫茲時(shí)域光譜無(wú)損檢測(cè)技術(shù)對(duì)耐高溫復(fù)合材料的多層脫粘缺陷進(jìn)行了檢測(cè)試驗(yàn)研究,對(duì)比了上下脫粘缺陷所對(duì)應(yīng)的太赫茲時(shí)域波形及頻譜信息的異同,針對(duì)性地建立了耐高溫復(fù)合材料粘貼質(zhì)量的上層脫粘參數(shù)、下層脫粘參數(shù)、頻域吸收質(zhì)心參數(shù)等多特征參數(shù),將特征參數(shù)進(jìn)行優(yōu)化作為反向傳播神經(jīng)網(wǎng)絡(luò)的輸入并對(duì)其進(jìn)行上下脫粘分類識(shí)別.通過(guò)對(duì)反向傳播神經(jīng)網(wǎng)絡(luò)的訓(xùn)練測(cè)試,實(shí)現(xiàn)了耐高溫復(fù)合材料上層脫粘0.1mm、下層脫粘0.1mm的脫粘缺陷的識(shí)別.
[Abstract]:A multi-characteristic parameter neural network analysis technique based on terahertz nondestructive testing (THz) is proposed to analyze the adhesive quality of high temperature resistant composites. The thickness of the strip is 0.1 mm. The multilayer debonding defects of high temperature resistant composites have been tested by using THz time-domain spectroscopy nondestructive testing technique, and the similarities and differences of terahertz time-domain waveforms and spectrum information corresponding to the upper and lower debonding defects have been compared. Several characteristic parameters, such as the upper layer debonding parameter, the lower layer debonding parameter, the frequency-domain absorption centroid parameter and so on, are established. The feature parameters are optimized as input of backpropagation neural network and identified by up-and-down debonding classification. The training test of backpropagation neural network is carried out. The debonding defects of the upper layer and the lower layer of the high temperature resistant composite are realized.
【作者單位】: 長(zhǎng)春理工大學(xué)光電工程學(xué)院光電測(cè)控技術(shù)研究所;長(zhǎng)春理工大學(xué)機(jī)電工程學(xué)院;
【基金】:國(guó)家高技術(shù)研究發(fā)展計(jì)劃(No.2015AA6036A) 國(guó)防技術(shù)基礎(chǔ)科研(No.JSZL2015411C002)資助~~
【分類號(hào)】:O441.4;TB33;TP183
,
本文編號(hào):1617091
本文鏈接:http://sikaile.net/kejilunwen/wulilw/1617091.html
最近更新
教材專著