計算周期序列k-錯線性復(fù)雜度的混合遺傳算法
發(fā)布時間:2021-01-22 05:32
周期序列的線性復(fù)雜度及其穩(wěn)定性是序列密碼評價的重要度量指標(biāo).k-錯線性復(fù)雜度是線性復(fù)雜度穩(wěn)定性的一個重要評價指標(biāo).然而,目前對于大部分周期序列(除周期為2n、pn、2pn外),尚無有效的算法求解其k-錯線性復(fù)雜度.因此,本文提出了一種混合的遺傳算法來近似計算任意周期序列的k-錯線性復(fù)雜度.采用輪盤賭、最優(yōu)保留策略、兩點交叉和單點隨機變異,并引入自適應(yīng)算子來調(diào)整交叉概率和變異概率,以保證遺傳算法的收斂性.通過并行計算適應(yīng)度函數(shù)來提高算法的效率,同時與模擬退火算法相結(jié)合,加速算法收斂并避免早熟.結(jié)果表明:當(dāng)k<8且周期小于256時,k-錯線性復(fù)雜度的實驗值僅比精確值高8%.
【文章來源】:上海交通大學(xué)學(xué)報. 2020,54(06)北大核心
【文章頁數(shù)】:8 頁
【部分圖文】:
序列s1的k-錯線性復(fù)雜度實驗值和準(zhǔn)確值對比
s2={111001001011110001101100000011010110101 11110110110111111011100110101001011100101011 10001100010001010000001110001101000000101001 1},N=128s3={01011011011010000010011101010110110010 11010000011101011110010000010110110111011011 10101110011100110101010100100101111011011101 00101000101100000001100000111111010001111110 01100001110011010111010101111001100010010011 001010011111100001000011000101111000011010},N=256
s3={01011011011010000010011101010110110010 11010000011101011110010000010110110111011011 10101110011100110101010100100101111011011101 00101000101100000001100000111111010001111110 01100001110011010111010101111001100010010011 001010011111100001000011000101111000011010},N=256對比文獻[16]的實驗結(jié)果,周期為32的二元序列的5-錯線性復(fù)雜度的實驗結(jié)果比準(zhǔn)確值平均高19.5%.而本文算法可以計算周期為256的二元序列的8-錯線性復(fù)雜度,其實驗值僅比準(zhǔn)確值高8%.因此,本文算法不僅使可計算的N、k增加,還提高了算法的準(zhǔn)確性和效率.
【參考文獻】:
期刊論文
[1]Linear Complexity of Least Significant Bit of Polynomial Quotients[J]. ZHAO Chun’e,MA Wenping,YAN Tongjiang,SUN Yuhua. Chinese Journal of Electronics. 2017(03)
[2]On the Linear Complexity of New Generalized Cyclotomic Binary Sequences of Order Two and Period pqr[J]. Longfei Liu,Xiaoyuan Yang,Xiaoni Du,Bin Wei. Tsinghua Science and Technology. 2016(03)
[3]Linear complexity problems of level sequences of Euler quotients and their related binary sequences[J]. Zhihua NIU,Zhixiong CHEN,Xiaoni DU. Science China(Information Sciences). 2016(03)
[4]On the k-error linear complexity of binary sequences derived from polynomial quotients[J]. CHEN ZhiXiong,NIU ZhiHua,WU ChenHuang. Science China(Information Sciences). 2015(09)
[5]On the Error Linear Complexity Spectrum of Binary Sequences with Period of Power of Two[J]. CHANG Zuling,KE Pinhui. Chinese Journal of Electronics. 2015(02)
本文編號:2992656
【文章來源】:上海交通大學(xué)學(xué)報. 2020,54(06)北大核心
【文章頁數(shù)】:8 頁
【部分圖文】:
序列s1的k-錯線性復(fù)雜度實驗值和準(zhǔn)確值對比
s2={111001001011110001101100000011010110101 11110110110111111011100110101001011100101011 10001100010001010000001110001101000000101001 1},N=128s3={01011011011010000010011101010110110010 11010000011101011110010000010110110111011011 10101110011100110101010100100101111011011101 00101000101100000001100000111111010001111110 01100001110011010111010101111001100010010011 001010011111100001000011000101111000011010},N=256
s3={01011011011010000010011101010110110010 11010000011101011110010000010110110111011011 10101110011100110101010100100101111011011101 00101000101100000001100000111111010001111110 01100001110011010111010101111001100010010011 001010011111100001000011000101111000011010},N=256對比文獻[16]的實驗結(jié)果,周期為32的二元序列的5-錯線性復(fù)雜度的實驗結(jié)果比準(zhǔn)確值平均高19.5%.而本文算法可以計算周期為256的二元序列的8-錯線性復(fù)雜度,其實驗值僅比準(zhǔn)確值高8%.因此,本文算法不僅使可計算的N、k增加,還提高了算法的準(zhǔn)確性和效率.
【參考文獻】:
期刊論文
[1]Linear Complexity of Least Significant Bit of Polynomial Quotients[J]. ZHAO Chun’e,MA Wenping,YAN Tongjiang,SUN Yuhua. Chinese Journal of Electronics. 2017(03)
[2]On the Linear Complexity of New Generalized Cyclotomic Binary Sequences of Order Two and Period pqr[J]. Longfei Liu,Xiaoyuan Yang,Xiaoni Du,Bin Wei. Tsinghua Science and Technology. 2016(03)
[3]Linear complexity problems of level sequences of Euler quotients and their related binary sequences[J]. Zhihua NIU,Zhixiong CHEN,Xiaoni DU. Science China(Information Sciences). 2016(03)
[4]On the k-error linear complexity of binary sequences derived from polynomial quotients[J]. CHEN ZhiXiong,NIU ZhiHua,WU ChenHuang. Science China(Information Sciences). 2015(09)
[5]On the Error Linear Complexity Spectrum of Binary Sequences with Period of Power of Two[J]. CHANG Zuling,KE Pinhui. Chinese Journal of Electronics. 2015(02)
本文編號:2992656
本文鏈接:http://sikaile.net/kejilunwen/wltx/2992656.html
最近更新
教材專著