基于動(dòng)態(tài)規(guī)劃的微弱目標(biāo)檢測(cè)前跟蹤算法研究
[Abstract]:With the emergence of high-speed targets and stealth targets, the detection and tracking of weak targets has received extensive attention. Pre-detection tracking algorithm is an efficient means to achieve weak target detection and tracking. When tracking low signal-to-noise ratio (SNR) targets, it accumulates energy along possible target tracks by continuously processing multiple frames of data to achieve target detection and tracking at the same time. Dynamic programming algorithm is a kind of multi-stage decision optimization problem. It is an efficient method to detect and track weak targets in the pre-detection tracking method, so it has become a hot research topic at home and abroad. In this paper, the pre-detection tracking algorithm based on dynamic programming is studied systematically, and the main research results are as follows: 1. The traditional pre-detection tracking algorithm based on dynamic programming is studied. This paper first introduces the basic principle of dynamic programming, then takes the point target moving at uniform speed under Gaussian noise as an example to study the realization flow of the pre-detection tracking algorithm based on dynamic programming, and proposes a new algorithm for removing false tracks based on overlapping track method and statistical direction histogram. Finally, the performance of the tracking algorithm before dynamic programming detection is analyzed in detail. 2. In view of the shortcomings of the traditional dynamic programming pre-detection tracking algorithm, three improved dynamic programming pre-detection tracking algorithms are proposed. Aiming at the disadvantage of large amount of computation, a two-level detection threshold algorithm is proposed, and in order to ensure the performance of the algorithm, the value function transfer step is added to the process of recurrent accumulation of dynamic programming algorithm. The results show that the computation can be greatly reduced under very small performance loss. For weak targets in complex environment, a complex likelihood ratio tracking algorithm using complex data phase information and hash graph information is proposed. Due to the use of phase information and hash map information, this algorithm can effectively detect targets from non-uniform strong hash environment, at the same time, compared with amplitude likelihood ratio algorithm, it also greatly reduces the amount of computation. Because of the characteristics of radar signal processing itself, a pre-detection tracking algorithm using Doppler information is proposed. The algorithm makes full use of Doppler information to reduce the search range, which not only reduces the amount of computation, but also reduces the influence of energy diffusion and strong clutters or noise points. Compared with the detection and tracking of weak targets in optical images, especially in complex environments, the algorithm can achieve better detection and tracking performance. The pre-detection tracking algorithm of multi-target detection based on dynamic programming is studied. Firstly, the theoretical model of multi-target detection pre-tracking algorithm is introduced and the difficulties of multi-target detection pre-tracking are analyzed. Then, by introducing the generalized detection program, a new multi-target detection pre-tracking algorithm using multi-target structure is proposed on the basis of the first two algorithms. The essence of these three algorithms is how to transform the detection and tracking of multiple targets into the detection and tracking of multiple single targets. Finally, the performance of the three algorithms is compared and analyzed by simulation, the results show that the new algorithm has the best performance, and the effectiveness of the algorithm is verified by the measured data.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN911.23
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 肖淑貞;張景文;;用網(wǎng)絡(luò)方法求解動(dòng)態(tài)規(guī)劃問(wèn)題的兩個(gè)實(shí)例[J];青島化工學(xué)院學(xué)報(bào);1988年03期
2 田園,馮珊;基于動(dòng)態(tài)規(guī)劃的多目標(biāo)跟蹤算法及實(shí)現(xiàn)[J];信息與控制;1997年01期
3 趙冬梅,郭耀煌,陶章華;多目標(biāo)動(dòng)態(tài)規(guī)劃問(wèn)題的非劣矩陣解法[J];電子科技大學(xué)學(xué)報(bào);1998年02期
4 張鵬;;一種多維連續(xù)型動(dòng)態(tài)規(guī)劃的新算法[J];控制與決策;2011年08期
5 吳東華;夏洪山;徐波;;飛機(jī)排班問(wèn)題的模糊優(yōu)選動(dòng)態(tài)規(guī)劃模型[J];濟(jì)南大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年01期
6 梁j,盛昭瀚,徐南榮;多目標(biāo)靜、動(dòng)態(tài)規(guī)劃的交互式區(qū)間逼近法[J];控制與決策;1991年02期
7 謝劍輝,郭嵩山;國(guó)際大學(xué)生程序設(shè)計(jì)競(jìng)賽試題與分析(四)——?jiǎng)討B(tài)規(guī)劃及其應(yīng)用──雜題[J];現(xiàn)代計(jì)算機(jī);2000年07期
8 金輝宇,于海斌;神經(jīng)元?jiǎng)討B(tài)規(guī)劃綜述[J];信息與控制;2001年04期
9 李少芳;陳德禮;;最小代價(jià)歸并樹的動(dòng)態(tài)規(guī)劃實(shí)現(xiàn)[J];太原師范學(xué)院學(xué)報(bào)(自然科學(xué)版);2007年03期
10 傅春生;;大系統(tǒng)優(yōu)化的動(dòng)態(tài)規(guī)劃遞階算法[J];南京工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);1989年04期
相關(guān)會(huì)議論文 前10條
1 蔣科林;遲寶山;許云華;刑俊文;;動(dòng)態(tài)規(guī)劃在裝備計(jì)劃生產(chǎn)中的運(yùn)用[A];2006全國(guó)復(fù)雜網(wǎng)絡(luò)學(xué)術(shù)會(huì)議論文集[C];2006年
2 張釗;裴燕玲;;動(dòng)態(tài)規(guī)劃的正向遞推方法[A];2005年度山東建筑學(xué)會(huì)優(yōu)秀論文集[C];2005年
3 玄一民;趙煥叢;劉宏;;動(dòng)態(tài)規(guī)劃在多重約束下可靠性選優(yōu)應(yīng)用研究[A];質(zhì)量——持續(xù)發(fā)展的源動(dòng)力:中國(guó)質(zhì)量學(xué)術(shù)與創(chuàng)新論壇論文集(下)[C];2010年
4 曹平;范萌萌;劉克;陳建州;;衛(wèi)星系統(tǒng)通訊路由問(wèn)題的動(dòng)態(tài)規(guī)劃建模[A];第十屆中國(guó)不確定系統(tǒng)年會(huì)、第十四屆中國(guó)青年信息與管理學(xué)者大會(huì)論文集[C];2012年
5 胡樂(lè)群;吳滄浦;;矢量指標(biāo)動(dòng)態(tài)規(guī)劃的滿意解方法[A];全國(guó)青年管理科學(xué)與系統(tǒng)科學(xué)論文集(第1卷)[C];1991年
6 宋紹劍;李勁芝;林小峰;;基于執(zhí)行依賴啟發(fā)式動(dòng)態(tài)規(guī)劃的三容水槽液位控制[A];第二十七屆中國(guó)控制會(huì)議論文集[C];2008年
7 海心;;使用Excel求解動(dòng)態(tài)規(guī)劃問(wèn)題方法探討[A];2005年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)論文集[C];2005年
8 宋丹丹;鄧志東;;基于模糊動(dòng)態(tài)規(guī)劃的RNA折疊算法的研究與實(shí)現(xiàn)[A];2005年中國(guó)智能自動(dòng)化會(huì)議論文集[C];2005年
9 張祥;王曉蕾;楊子賓;王劍;;動(dòng)態(tài)規(guī)劃理論在雷達(dá)可靠性評(píng)估中的應(yīng)用[A];2009第五屆蘇皖兩省大氣探測(cè)、環(huán)境遙感與電子技術(shù)學(xué)術(shù)研討會(huì)專輯[C];2009年
10 胡鐵松;段國(guó)圣;萬(wàn)永華;馮尚友;;多目標(biāo)動(dòng)態(tài)規(guī)劃的攝動(dòng)權(quán)重法[A];1993中國(guó)控制與決策學(xué)術(shù)年會(huì)論文集[C];1993年
相關(guān)重要報(bào)紙文章 前1條
1 彭舒佳;專家吁建動(dòng)態(tài)規(guī)劃?rùn)C(jī)制“糾編”用地[N];中國(guó)房地產(chǎn)報(bào);2008年
相關(guān)博士學(xué)位論文 前4條
1 王穎;基于仿真的可重入生產(chǎn)系統(tǒng)的神經(jīng)元?jiǎng)討B(tài)規(guī)劃調(diào)度研究[D];廈門大學(xué);2007年
2 費(fèi)蓉;動(dòng)態(tài)規(guī)劃研究及其在電力市場(chǎng)動(dòng)態(tài)分區(qū)定價(jià)問(wèn)題中的應(yīng)用[D];西安理工大學(xué);2009年
3 王怡慧;動(dòng)態(tài)規(guī)劃加速算法和輪廓探測(cè)算法[D];復(fù)旦大學(xué);2012年
4 姜琳;過(guò)程控制優(yōu)化中的智能方法研究[D];吉林大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 陳銘;基于動(dòng)態(tài)規(guī)劃的弱小目標(biāo)檢測(cè)前跟蹤(DP-TBD)算法研究[D];電子科技大學(xué);2014年
2 安政帥;基于動(dòng)態(tài)規(guī)劃的微弱目標(biāo)檢測(cè)前跟蹤算法研究[D];西安電子科技大學(xué);2014年
3 張宏偉;數(shù)學(xué)建模中的動(dòng)態(tài)規(guī)劃問(wèn)題[D];東北師范大學(xué);2008年
4 鄢長(zhǎng)偉;一類動(dòng)態(tài)規(guī)劃問(wèn)題的約束指標(biāo)的決策方法[D];遼寧工程技術(shù)大學(xué);2012年
5 張晨;基于近似動(dòng)態(tài)規(guī)劃的隨機(jī)車輛路徑問(wèn)題研究[D];清華大學(xué);2012年
6 王振興;近似動(dòng)態(tài)規(guī)劃在供應(yīng)鏈生產(chǎn)環(huán)節(jié)風(fēng)險(xiǎn)管理中的應(yīng)用研究[D];清華大學(xué);2009年
7 徐鵬;多階段營(yíng)銷信息動(dòng)態(tài)發(fā)送建模與分析[D];南京大學(xué);2013年
8 葉偉寶;基于近似動(dòng)態(tài)規(guī)劃的倒立擺控制[D];廣西大學(xué);2007年
9 羅江;基于動(dòng)態(tài)規(guī)劃的計(jì)算機(jī)孔型優(yōu)化技術(shù)研究[D];武漢科技大學(xué);2003年
10 湯善江;面向DAG數(shù)據(jù)依賴型應(yīng)用系統(tǒng)研究與實(shí)現(xiàn)[D];天津大學(xué);2010年
,本文編號(hào):2502649
本文鏈接:http://sikaile.net/kejilunwen/wltx/2502649.html