天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

雷達機動目標(biāo)運動模型與跟蹤算法研究

發(fā)布時間:2019-05-22 19:12
【摘要】:目標(biāo)跟蹤問題是一個隨著跟蹤對象的變化、發(fā)展而不斷發(fā)展、深入研究的問題。通過目標(biāo)跟蹤,實現(xiàn)對目標(biāo)狀態(tài)的精確估計,從而為后續(xù)的很多信息處理,如目標(biāo)威脅估計、指揮決策等提供穩(wěn)定的數(shù)據(jù)基礎(chǔ)。由于新型跟蹤目標(biāo)的出現(xiàn)以及對目標(biāo)跟蹤信息的不斷需求,機動目標(biāo)跟蹤越來越成為當(dāng)前研究熱點。論文結(jié)合863課題:“空天多源信息×××研究”,主要開展雷達機動目標(biāo)的運動建模與濾波跟蹤算法方面的研究。論文的主要內(nèi)容包括: 首先介紹了論文的研究背景,并對機動目標(biāo)跟蹤中的兩大問題:目標(biāo)運動模型、跟蹤算法的研究現(xiàn)狀進行了詳細(xì)論述,并介紹了本文的研究內(nèi)容。 以參數(shù)“α”和“η”為特征參量,建立了基于α-η參數(shù)的強機動目標(biāo)運動模型。通過詳細(xì)分析Singer模型和Jerk模型的特征,分析了二者在表征目標(biāo)運動特征方面的不足。基于此,,以參數(shù)α和η為參數(shù)特征,建立了強機動目標(biāo)的α-η參數(shù)運動模型。通過對α-η參數(shù)運動模型的離散化處理,推導(dǎo)出α-η參數(shù)運動模型的狀態(tài)-測量模型,并詳細(xì)分析了α-η參數(shù)運動模型的特征。實驗表明該運動模型具有較強的目標(biāo)機動模式表征能力。 提出了一種基于修正不敏卡爾曼濾波的目標(biāo)跟蹤算法。在UKF算法中,濾波增益的計算主要由兩個協(xié)方差決定:狀態(tài)協(xié)方差、狀態(tài)與測量的協(xié)方差,當(dāng)目標(biāo)作機動時,濾波增益將滯后于目標(biāo)的機動狀態(tài),從而使跟蹤誤差變大。因而,在跟蹤過程中,通過實時估計噪聲協(xié)方差的修正因子,然后利用修正因子實時修正預(yù)測狀態(tài)協(xié)方差,利用修正后的預(yù)測協(xié)方差更新狀態(tài)協(xié)方差,進而修正濾波增益。采用自適應(yīng)因子修正后的協(xié)方差來計算濾波增益,使得修正后的濾波增益與目標(biāo)的運動相匹配,從而獲得較好的濾波跟蹤精度。實驗表明該算法具有比UKF更好的跟蹤性能。 融合UT變換和EKF各自優(yōu)點,在提高算法的跟蹤性能和較少運算時間方面,提出了兩種目標(biāo)跟蹤算法。(1)不敏擴展卡爾曼濾波跟蹤算法。UKF在非線性跟蹤系統(tǒng)中具有比EKF更好的跟蹤性能,但是所需的計算時間大于EKF的計算時間。基于此原因,提出了一種融合不敏變換(UT)和擴展卡爾曼濾波的目標(biāo)跟蹤方法,該方法主要通過把UKF中狀態(tài)協(xié)方差以及狀態(tài)和測量值的互協(xié)方差的多項矢量相乘轉(zhuǎn)換成多個相加的計算,從而有效減少算法的運算時間。該算法融合UT變換的多樣性Sigma粒子的特點以及EKF的運算時間快的特點,既保留了較好的濾波跟蹤精度,又具有較少的運算時間。(2)自適應(yīng)不敏擴展卡爾曼濾波跟蹤算法。在不敏擴展卡爾曼濾波過程中,利用殘差信息,采用指數(shù)衰減和遺忘因子的方式實時估計和修正兩個噪聲協(xié)方差,實現(xiàn)噪聲協(xié)方差的自適應(yīng)估計。實驗表明這兩種算法具有比UKF較好的跟蹤精度,又具有較少的運算時間。 在提高模型概率估計準(zhǔn)確性方面,提出了一種基于模型概率修正的交互多模型算法。交互多模算法在計算濾波后的狀態(tài)信息時,加權(quán)因子(即模型概率)的計算主要利用兩類信息:新息和模型概率預(yù)測值,該方法沒有利用當(dāng)前時刻狀態(tài)協(xié)方差的有效信息,造成對模型概率估計的不準(zhǔn)確;谶@個特性,把狀態(tài)協(xié)方差的信息融合得到另一個加權(quán)因子,利用該加權(quán)因子修正IMM算法中的模型概率估計值,即:加權(quán)因子的模型概率修正。該算法既利用了預(yù)測模型概率因子,又利用了當(dāng)前狀態(tài)方差加權(quán)因子,因而,具有較為準(zhǔn)確的模型選擇概率估計。通過實驗驗證了該算法具有比IMM較準(zhǔn)確的模型概率估計能力。 最后對論文的工作進行了總結(jié),并指出論文的不足和今后的研究方向。
[Abstract]:The problem of target tracking is a problem that is developed and researched deeply with the change and development of the tracking target. Through the target tracking, the accurate estimation of the target state is realized, so that a stable data base is provided for a plurality of subsequent information processing, such as the target threat estimation, the command decision and the like. As a result of the emergence of the new tracking target and the continuous demand for the target tracking information, the tracking of the maneuvering target is becoming the focus of the current research. In this paper, the research on the motion modeling and the filter tracking algorithm of the radar maneuvering target is mainly carried out in the "A Study on the Multi-source Information of the Sky-sky" of 863. The main contents of the thesis include: In this paper, the research background of the paper is introduced, and the two main problems in the tracking of the maneuvering target are introduced: the target motion model, the research status of the tracking algorithm are discussed in detail, and the research in this paper is also introduced. On the basis of the parameter "a hand" and the "a hand" as the characteristic parameters, the strong maneuvering target transportation based on the parameter of the parameter of the parameter is established. The characteristics of the Singer model and the Jerk model are analyzed in detail, and the characteristics of the target motion are analyzed by analyzing the characteristics of the Singer model and the Jerk model. In this paper, the parameters of the strong maneuvering target are set up based on the parameters and the parameters, and the parameters of the strong-maneuvering target are set up. In this paper, the state-to-measure model of the motion model of the P-P parameter is derived by the discretization of the motion model of the P-P parameter, and the motion model of the motion model is analyzed in detail. The experimental results show that the motion model has a strong target maneuver model. The purpose of this paper is to provide an object based on the modified non-sensitive Kalman filter. in a UKF algorithm, the calculation of the filter gain is mainly determined by two covariance decisions: state covariance, state and measured covariance, and when the target is mobile, the filter gain will lag behind the maneuvering state of the target, so as to The tracking error is increased. Thus, in the tracking process, the correction factor of the noise covariance is estimated by real-time, then the prediction state covariance is corrected in real time by the correction factor, the state covariance is updated with the modified prediction covariance, the filter gain is calculated by using the covariance of the adaptive factor correction, so that the corrected filter gain is matched with the movement of the target, so that a better filter is obtained The experiment shows that the algorithm is better than the UKF. The advantages of the fusion UT transform and the EKF have the advantages of improving the tracking performance and the less operation time of the algorithm. A target tracking algorithm. (1) Unsensitive extension of Carl The Kalman filter tracking algorithm. UKF has better tracking performance than EKF in a non-linear tracking system, but the required calculation time is greater than E. Based on this reason, a target tracking method of fusion-insensitive transform (UT) and extended Kalman filter is proposed, which is mainly used to convert the state covariance of UKF and the multi-vector of the mutual covariance of the state and the measurement. a plurality of addition calculations to effectively reduce The operation time of the algorithm is as follows: the characteristics of the diversity Sigma particles transformed by the algorithm and the characteristics of the operation time of the EKF are fast, so that the better filtering and tracking precision is preserved, and the algorithm less computation time. (2) Adaptive non-sensitive extension of Carl In the process of the non-sensitive extended Kalman filter, the residual information is used to estimate and correct the two noise covariance in real time by means of exponential decay and forgetting factor, so as to realize the noise coordination. The experimental results show that the two algorithms have better tracking precision than UKF and have the same In order to improve the accuracy of the model probability estimation, a model-based probability model is proposed. An interactive multi-mode algorithm is used to calculate the state information after filtering. The calculation of the weighting factor (i.e., the probability of the model) mainly uses two types of information: the new interest and the model probability prediction value, and the method does not utilize the effective information of the current time state covariance to cause the opposite mode. based on this characteristic, the information of the state covariance is fused to obtain another weighting factor, and the model probability estimation value in the IMM algorithm is corrected by the weighting factor, that is, the weight The algorithm not only uses the prediction model probability factor but also uses the current state variance weighting factor, so it has more accuracy. The model selection probability is estimated by the experiment. The experiment verifies that the algorithm is more accurate than the IMM Finally, the paper sums up the work of the paper, and points out that the pape
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TN953

【相似文獻】

相關(guān)期刊論文 前10條

1 陳非,敬忠良,李鋒;空基多平臺多傳感器機動目標(biāo)自適應(yīng)跟蹤[J];上海交通大學(xué)學(xué)報;2003年04期

2 王晟達;韓崇昭;賀建文;;一種用于復(fù)雜運動目標(biāo)跟蹤的新技術(shù)[J];彈箭與制導(dǎo)學(xué)報;2003年S4期

3 任少偉,王睿,張平定;基于機動頻率自適應(yīng)的目標(biāo)跟蹤算法[J];空軍工程大學(xué)學(xué)報(自然科學(xué)版);2004年05期

4 胡振濤,劉先省;基于“當(dāng)前”統(tǒng)計模型的一種改進機動目標(biāo)跟蹤算法[J];山東大學(xué)學(xué)報(工學(xué)版);2005年03期

5 羅笑冰;王宏強;黎湘;莊釗文;;機動目標(biāo)跟蹤α-jerk模型[J];信號處理;2007年04期

6 何廣軍;張志偉;吳劍鋒;;機動目標(biāo)跟蹤的HIMM算法研究[J];電光與控制;2009年12期

7 李鵬飛;黃建軍;黃敬雄;萬明杰;李良群;;一種模糊Kalman濾波機動目標(biāo)跟蹤的新算法[J];數(shù)據(jù)采集與處理;2009年04期

8 劉長江;袁俊泉;馬維嶸;丁順寶;;徑向速度量測在機動目標(biāo)跟蹤中的應(yīng)用[J];現(xiàn)代雷達;2010年06期

9 潘泉;機動目標(biāo)跟蹤雙濾波器模型及自適應(yīng)算法[J];控制理論與應(yīng)用;1995年04期

10 張永勝 ,嵇成新;機動目標(biāo)跟蹤的模式集自適應(yīng)IMM算法的設(shè)計和比較[J];情報指揮控制系統(tǒng)與仿真技術(shù);2001年08期

相關(guān)會議論文 前10條

1 巴宏欣;趙宗貴;劉海燕;楊飛;曹雷;;一種機動目標(biāo)跟蹤的交互式多模型算法[A];’2004系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)交流會論文集[C];2004年

2 單甘霖;朱紀(jì)洪;王子棟;郭治;;具有有色噪聲和指定預(yù)測方差的目標(biāo)跟蹤[A];1994中國控制與決策學(xué)術(shù)年會論文集[C];1994年

3 邱曉波;周啟煌;竇麗華;;機動目標(biāo)跟蹤的參數(shù)辨識模型[A];2009年中國智能自動化會議論文集(第一分冊)[C];2009年

4 楊盤洪;朱軍祥;趙建安;楊靜;;機動目標(biāo)跟蹤的模糊變結(jié)構(gòu)交互多模算法[A];2007'中國儀器儀表與測控技術(shù)交流大會論文集(二)[C];2007年

5 張莎;楊小軍;;Kalman濾波在光電測控系統(tǒng)中的應(yīng)用[A];2010振動與噪聲測試峰會論文集[C];2010年

6 王成;李卓林;;雷達數(shù)據(jù)處理技術(shù)研究[A];四川省電子學(xué)會雷達與火控、電子線路與系統(tǒng)專業(yè)委員會學(xué)術(shù)交流會10周年優(yōu)秀論文集[C];2006年

7 胡振濤;劉先省;;基于“當(dāng)前”統(tǒng)計模型的一種改進機動目標(biāo)跟蹤算法[A];第16屆中國過程控制學(xué)術(shù)年會暨第4屆全國故障診斷與安全性學(xué)術(shù)會議論文集[C];2005年

8 曲洪權(quán);李少洪;;一種改進的機動目標(biāo)跟蹤算法[A];第十三屆全國信號處理學(xué)術(shù)年會(CCSP-2007)論文集[C];2007年

9 朱自謙;;用于機動目標(biāo)跟蹤的復(fù)合機動模型及其應(yīng)用[A];1992年中國控制與決策學(xué)術(shù)年會論文集[C];1992年

10 郜建軍;崔桃瑞;周宏仁;;雜波環(huán)境下機動目標(biāo)跟蹤的分布式估計算法[A];1996年中國控制會議論文集[C];1996年

相關(guān)重要報紙文章 前1條

1 沈?qū)W鋒 周玉杰 本報特約通訊員 潘正軍;為保障植入“精確芯片”[N];解放軍報;2008年

相關(guān)博士學(xué)位論文 前10條

1 陳亮;機動目標(biāo)跟蹤關(guān)鍵技術(shù)研究[D];哈爾濱工程大學(xué);2012年

2 何衍;機動目標(biāo)跟蹤與傳感器網(wǎng)絡(luò)自組織[D];浙江大學(xué);2001年

3 劉昌云;雷達機動目標(biāo)運動模型與跟蹤算法研究[D];西安電子科技大學(xué);2014年

4 李洪瑞;水下目標(biāo)運動分析關(guān)鍵技術(shù)研究[D];南京理工大學(xué);2009年

5 胡煒薇;多傳感器數(shù)據(jù)融合中多目標(biāo)跟蹤關(guān)鍵技術(shù)研究[D];哈爾濱工程大學(xué);2007年

6 高羽;自確認(rèn)傳感器理論及應(yīng)用研究[D];復(fù)旦大學(xué);2008年

7 黨瑩;強雜波下機動目標(biāo)跟蹤技術(shù)研究[D];中國科學(xué)院長春光學(xué)精密機械與物理研究所;2001年

8 徐洪奎;近程多基地雷達探測系統(tǒng)中快速跟蹤方法研究[D];中國科學(xué)技術(shù)大學(xué);2007年

9 尹建君;線性/非線性系統(tǒng)的混合動態(tài)濾波理論及應(yīng)用[D];復(fù)旦大學(xué);2008年

10 蔣榮欣;多機器人編隊導(dǎo)航若干關(guān)鍵技術(shù)研究[D];浙江大學(xué);2008年

相關(guān)碩士學(xué)位論文 前10條

1 郭睿利;地面機動目標(biāo)跟蹤算法研究[D];杭州電子科技大學(xué);2012年

2 吳凡;基于非線性濾波的機動目標(biāo)跟蹤算法研究[D];西安電子科技大學(xué);2010年

3 姜燕;多模型機動目標(biāo)跟蹤算法研究[D];太原理工大學(xué);2010年

4 孫杰;大型機場場面機動目標(biāo)跟蹤算法研究[D];電子科技大學(xué);2011年

5 蔡萌;機動目標(biāo)跟蹤方法研究[D];哈爾濱工業(yè)大學(xué);2010年

6 潘寶貴;基于模糊控制的檢測自適應(yīng)機動目標(biāo)跟蹤算法研究[D];杭州電子科技大學(xué);2013年

7 孫粲;機動目標(biāo)跟蹤交互式多模型算法研究[D];山東大學(xué);2013年

8 劉德虎;基于變結(jié)構(gòu)多模型算法的高機動目標(biāo)跟蹤研究[D];中國艦船研究院;2013年

9 魏紀(jì)鋒;基于Jerk模型的高機動目標(biāo)跟蹤算法研究[D];哈爾濱工程大學(xué);2010年

10 沈振;粒子濾波算法研究及其在機動目標(biāo)跟蹤中的應(yīng)用[D];電子科技大學(xué);2012年



本文編號:2483178

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/wltx/2483178.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶9931a***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com