基于混合模型和水平集的高分辨SAR圖像分類
[Abstract]:Synthetic Aperture Radar (Synthetic Aperture Radar,SAR) can image the earth's surface objects all day and 24 hours a day, and can penetrate the earth's surface. Sar can obtain high spatial resolution, so high resolution SAR images are military. Agriculture and medicine are playing an increasingly important role. However, because of the serious multiplicative coherent speckle noise in high resolution SAR images, the traditional classification method will not get good classification results. Therefore, this paper proposes a hybrid model based on K-SVD training dictionary, which can correctly describe the statistical characteristics of SAR images, and a SAR image classification method based on hybrid model and improved level set. The specific improvement ideas are as follows: (1) because of the serious multiplicative coherent speckle noise in SAR images, the traditional single model can no longer accurately model the high resolution SAR images. In this paper, a hybrid model statistical modeling method based on K-SVD algorithm training dictionary is proposed, which is based on two models: lognormal distribution and Weibull distribution. Because the traditional EM algorithm is complex in the modeling process of SAR image hybrid model, a K-SVD algorithm is proposed to train the dictionary. In this paper, the SKS parameter estimation method based on Merlin transform is selected to estimate the parameters of lognormal model and Weibull model. The mixed model fitting of homogeneous region, uneven region and extremely uneven region of SAR image shows that, The hybrid model can carry on the better statistical modeling to all kinds of ground objects. (2) because the level set classification method based on Gamma statistical model can not carry on the high precision classification to the high resolution SAR image, A high resolution SAR image classification method based on K-SVD training dictionary hybrid model and improved SAR model level set is proposed. In the typical model Chen-Vase (CV) model of the level set, it is assumed that each feature region of the SAR image has the same intensity. In fact, there are many uneven regions in the SAR image. Therefore, there are some limitations in the application of CV model to SAR image classification. Therefore, in the level set classification method, a hybrid model based on K-SVD training dictionary is proposed to statistically model the different regions of high resolution SAR images. (3) because edge information is an important basis for SAR image classification, In this paper, a high resolution SAR image level set classification method is proposed, which combines edge information with improved region information. In the regional energy function, a hybrid model which can well model SAR images is used to replace the Gao Si model in CV model. The experimental results show that the hybrid model based on K-SVD algorithm training dictionary and the improved level set classification method can classify high resolution SAR images with high accuracy.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TN957.52
【相似文獻】
相關(guān)期刊論文 前10條
1 詹勇;楊燕;王紅軍;;混合模型的微博交叉話題發(fā)現(xiàn)[J];計算機科學(xué)與探索;2013年08期
2 于林森;張?zhí)镂?;一種結(jié)合位置信息的混合模型圖像分割方法[J];信號處理;2007年03期
3 閆寶珠;袁圣付;陸啟生;;等面積混合模型與等壓混合模型的理論比較[J];國防科技大學(xué)學(xué)報;2007年06期
4 張大明;符茂勝;郭慧;羅斌;;基于懲罰距離的混合模型分量數(shù)自動估計算法[J];華南理工大學(xué)學(xué)報(自然科學(xué)版);2009年10期
5 戴麗麗;宋余慶;陳健美;謝從華;;遺傳K-均值初始化的t混合模型醫(yī)學(xué)圖像聚類[J];計算機應(yīng)用研究;2010年08期
6 謝從華;宋余慶;陳健美;常晉義;;醫(yī)學(xué)圖像的混合模型成份數(shù)估計[J];計算機科學(xué);2010年10期
7 易翔,王蔚然;基于小波域統(tǒng)計混合模型的圖像降噪方法[J];電子與信息學(xué)報;2005年11期
8 曹玲芝;陳雨;李春文;;直接甲醇燃料電池的混合模型及其仿真分析[J];電子技術(shù)應(yīng)用;2010年03期
9 王立國;張晶;;基于線性光譜混合模型的光譜解混改進模型[J];光電子.激光;2010年08期
10 夏睿;宗成慶;;情感文本分類混合模型及特征擴展策略[J];智能系統(tǒng)學(xué)報;2011年06期
相關(guān)會議論文 前10條
1 沈樂君;;基于混合模型的多目標實時跟蹤算法[A];2013體育計算機應(yīng)用論文集[C];2013年
2 紀琳;黃震宇;;中頻振動混合模型理論的應(yīng)用局限性分析[A];現(xiàn)代振動與噪聲技術(shù)(第九卷)[C];2011年
3 汪傳建;李曉光;王大玲;于戈;;一種基于混合模型的文本分類器的研究與實現(xiàn)[A];第二十一屆中國數(shù)據(jù)庫學(xué)術(shù)會議論文集(研究報告篇)[C];2004年
4 徐斌;馬盡文;;一種柯西混合模型上梯度型BYY和諧學(xué)習(xí)算法[A];第十三屆全國信號處理學(xué)術(shù)年會(CCSP-2007)論文集[C];2007年
5 蘭永紅;吳敏;佘錦華;;基于二維混合模型的最優(yōu)重復(fù)控制[A];第二十六屆中國控制會議論文集[C];2007年
6 張勝利;張沅;;混合模型方法對QTL的檢測及定位效果[A];生命科學(xué)與生物技術(shù):中國科協(xié)第三屆青年學(xué)術(shù)年會論文集[C];1998年
7 馬凌;周江;王文鼐;;突發(fā)性業(yè)務(wù)流的Gamma泊松混合模型及排隊性能研究[A];中國通信學(xué)會第五屆學(xué)術(shù)年會論文集[C];2008年
8 沈文豪;聶大仕;謝菲;;氣升式內(nèi)環(huán)流反應(yīng)器的液相流動混合模型[A];第一屆全國化學(xué)工程與生物化工年會論文摘要集(上)[C];2004年
9 趙廣建;,
本文編號:2474141
本文鏈接:http://sikaile.net/kejilunwen/wltx/2474141.html