基于增強(qiáng)學(xué)習(xí)的個(gè)性化音樂情感分類系統(tǒng)研究
[Abstract]:Music is an important carrier of emotion and an indispensable factor in people's daily life. With the rapid growth of the number of digital music, the demand for music emotion classification and retrieval is increasing. The current research on music emotion classification takes emotion classification as a static process and ignores the subjective preference of users for music emotion understanding. This paper mainly studies the personalized music emotion classification system based on enhanced learning. Based on the classical emotional model of psychology, VA model, this paper extracts an emotional space containing 12 emotional categories, and classifies the audio features of songs as the basis of classification. A new static model of music emotion classification is trained by applying and comparing a variety of classification algorithms. Considering the error of static classification model itself and the subjective deviation of user's understanding of music emotion, this paper analyzes the behavior of users in listening to music on the basis of this static model. A novel dynamic model based on reinforcement learning is constructed. The model adjusts the emotional classification results dynamically by learning the user's behavior to realize the personalized customization of the user's emotional preference. This paper collects 600 songs covering 12 emotional categories evenly from the commercial music website, carries on the audio feature extraction and the feature screening to the songs, and establishes a brand-new music emotion classification training set. A novel prototype system of music emotion classification is implemented. In this paper, the classification accuracy of static emotion classification model is analyzed by experiments, and the feasibility and effectiveness of dynamic learning model is verified by simulation of user behavior. The results of a small-scale user experience survey show that the prototype system studied in this paper has a good application effect.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN912.3;TP18
【相似文獻(xiàn)】
相關(guān)期刊論文 前7條
1 蔣盛益;李霞;李碧;王連喜;;音樂情感自動(dòng)分析研究[J];計(jì)算機(jī)工程與設(shè)計(jì);2010年18期
2 徐欣;周運(yùn);邵曦;;基于音樂情感特征提取的音樂檢索分析[J];信息通信;2011年05期
3 張玉英;孫旭光;馬睿;;基于音樂情感的音樂噴泉CAD系統(tǒng)[J];科技創(chuàng)新導(dǎo)報(bào);2012年11期
4 梁曉雯;閔友鋼;;音樂情感分類技術(shù)在媒體資產(chǎn)管理中的應(yīng)用[J];廣播與電視技術(shù);2009年01期
5 莊周;孟子厚;;混響對(duì)音樂情感感知的影響[J];演藝科技;2012年08期
6 袁文彬;;論舞蹈作品中肢體語言和音樂情感的關(guān)系[J];藝術(shù)科技;2014年05期
7 ;[J];;年期
相關(guān)會(huì)議論文 前7條
1 王愈;蔡銳;蔡蓮紅;;音樂情感分類中關(guān)鍵問題的研究[A];第一屆建立和諧人機(jī)環(huán)境聯(lián)合學(xué)術(shù)會(huì)議(HHME2005)論文集[C];2005年
2 孫守遷;王鑫;劉濤;湯永川;;音樂情感的語言值計(jì)算模型研究[A];2006年首屆ICT大會(huì)信息、知識(shí)、智能及其轉(zhuǎn)換理論第一次高峰論壇會(huì)議論文集[C];2006年
3 王靜;朱慕華;胡明涵;;部分監(jiān)督的音樂情感分類[A];中國(guó)計(jì)算語言學(xué)研究前沿進(jìn)展(2009-2011)[C];2011年
4 張娜;孫峗;毛峽;;音樂情感特征分析[A];第一屆中國(guó)情感計(jì)算及智能交互學(xué)術(shù)會(huì)議論文集[C];2003年
5 肖利俠;;民樂華彩(一)[A];第三屆中小學(xué)教師教學(xué)設(shè)計(jì)展論文集[C];2013年
6 劉怡;高s,
本文編號(hào):2468619
本文鏈接:http://sikaile.net/kejilunwen/wltx/2468619.html