協(xié)同導(dǎo)航網(wǎng)絡(luò)多傳感器信息融合技術(shù)研究
[Abstract]:With the gradual attention of the world to the ocean problem, the surface high motorized unmanned craft has obtained unprecedented high speed development, and will play an important role in the future naval battle. In order to adapt to the more complex future marine combat environment, the cooperative navigation technology of unmanned craft is facing a great challenge compared with the traditional navigation technology. This subject will start with the multi-sensor information fusion technology in the cooperative navigation network. Firstly, the research status of unmanned craft technology in various countries is briefly introduced, and through the research and analysis on the development of unmanned craft in China, we know that, Although China has made great progress in recent years, there is still a big gap between China and the United States and Israel. As far as the cooperative navigation network of unmanned craft is concerned, the method to shorten the gap is not only to improve the sensor accuracy in the cooperative network, but also to improve the optimal estimation criterion in information fusion. In this paper, the structure, information source and fusion criteria of multi-sensor information fusion in cooperative navigation network are analyzed and compared, and the results show that the fusion criteria for different noise environments and different system equations are different. Secondly, this paper analyzes the sources of information in the UAV cooperative navigation network, and establishes a suitable mathematical model for simulation analysis according to the characteristics of the information. In view of the important position of inertial navigation system in its cooperative navigation network, the principle, modeling and simulation of inertial navigation system are analyzed and introduced in detail in this paper. Through the modeling and simulation of inertial navigation system, GPS global positioning system, DR dead reckoning system and mobile long baseline positioning system, this paper provides a data source for the algorithm realization of information fusion optimal estimation criterion. Finally, the optimal estimation criterion of information fusion in system navigation network is simulated and analyzed. According to the characteristics of the data fusion subsystem, different Kalman filters are designed. When GPS and inertial navigation system are fused, the linear Kalman filter is used as the fusion criterion. The simulation results show that the adaptive Kalman filter can obtain a good filtering effect without a large increase in the computational complexity for the linear integrated navigation system. For GPS and DR information fusion systems, the nonlinear Kalman filter includes extended Kalman filter and unscented Kalman filter. When the external noise is Gao Si white noise, the unscented Kalman filter has a good filtering effect. However, when the statistical characteristics of system noise and measurement noise are not satisfied with Gao Si white noise, the above two nonlinear filters will have large errors and even lead to the divergence of filters. Through the research and simulation analysis of the main technology of information fusion, the positioning accuracy and the quality of navigation information can be greatly improved by using multi-sensor information fusion technology for unmanned craft cooperative navigation network.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U666.1;TP202;TN96
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李岳;;分布式融合處理結(jié)構(gòu)研究[J];艦船電子工程;2013年06期
2 張萍萍;孫永侃;李雪飛;;視景仿真環(huán)境下基于卡爾曼濾波的運(yùn)動(dòng)目標(biāo)航跡預(yù)測方法[J];兵工自動(dòng)化;2013年05期
3 王琳;;可視化智能無人偵察救援巡邏艇在公安邊防中的應(yīng)用[J];警察技術(shù);2013年03期
4 趙娟妮;;多傳感器數(shù)據(jù)融合技術(shù)及其在光伏電站監(jiān)控系統(tǒng)中的應(yīng)用[J];科技信息;2013年07期
5 孫世權(quán);高淑萍;梁原;邊疆;;基于數(shù)據(jù)融合技術(shù)的多屬性群決策方法[J];系統(tǒng)工程與電子技術(shù);2012年10期
6 楊彥濤;李光磊;;卡爾曼濾波技術(shù)在潛艇組合導(dǎo)航中的應(yīng)用研究[J];船電技術(shù);2012年04期
7 莊佳園;萬磊;廖煜雷;孫寒冰;;基于電子海圖的水面無人艇全局路徑規(guī)劃研究[J];計(jì)算機(jī)科學(xué);2011年09期
8 廖煜雷;龐永杰;莊佳園;;無人水面艇嵌入式基礎(chǔ)運(yùn)動(dòng)控制系統(tǒng)研究[J];計(jì)算機(jī)科學(xué);2010年09期
9 黃惠寧;劉源璋;梁昭陽;;多傳感器數(shù)據(jù)融合技術(shù)概述[J];科技信息;2010年15期
10 譚述森;;北斗衛(wèi)星導(dǎo)航系統(tǒng)的發(fā)展與思考[J];宇航學(xué)報(bào);2008年02期
相關(guān)博士學(xué)位論文 前1條
1 趙輝;基于水下航行器導(dǎo)航定位及信息融合技術(shù)研究[D];南京理工大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 李高飛;基于非線性統(tǒng)計(jì)模型分析的機(jī)動(dòng)車定位算法實(shí)現(xiàn)研究[D];南京郵電大學(xué);2013年
2 侯平仁;無人多功能海事船自主航行系統(tǒng)研究與設(shè)計(jì)[D];武漢理工大學(xué);2012年
3 劉光明;無人多功能海事船控制平臺(tái)設(shè)計(jì)與通信網(wǎng)絡(luò)的構(gòu)建[D];武漢理工大學(xué);2012年
4 趙虹;基于飛機(jī)彈射座椅姿態(tài)求解算法的仿真研究與實(shí)現(xiàn)[D];南京理工大學(xué);2012年
5 王慶旭;三體滑行艇阻力和穩(wěn)定性研究[D];哈爾濱工程大學(xué);2012年
6 胡文戢;基于IMM算法的組合導(dǎo)航系統(tǒng)故障診斷研究[D];華中科技大學(xué);2011年
7 何超;捷聯(lián)慣性導(dǎo)航系統(tǒng)MEMS傳感器誤差補(bǔ)償[D];哈爾濱工業(yè)大學(xué);2010年
8 黃金山;GPS/SINS/SAR組合導(dǎo)航系統(tǒng)信息融合及誤差修正技術(shù)研究[D];西安電子科技大學(xué);2010年
9 崔璐璐;基于MEMS器件的姿態(tài)測量系統(tǒng)研究與實(shí)現(xiàn)[D];大連理工大學(xué);2009年
10 穆振興;無人機(jī)姿態(tài)測量系統(tǒng)設(shè)計(jì)實(shí)現(xiàn)[D];哈爾濱工業(yè)大學(xué);2009年
,本文編號(hào):2426415
本文鏈接:http://sikaile.net/kejilunwen/wltx/2426415.html