利用壓縮感知提升極化敏感陣列參數(shù)估計性能的方法研究
[Abstract]:Compared with scalar antennas, polarization-sensitive array signal processing increases the dimension of polarization parameter estimation, and improves the output performance of array signal processing (including parameter estimation) by using the spatial and polarization domain information of incident signal simultaneously. So more and more researchers in the field of array signal processing pay more and more attention. The traditional joint polarization-spatial domain spectral estimation method uses the rotation invariance of polarization-spatial domain to solve the direction of arrival (pitch angle, azimuth) and polarization state (auxiliary polarization angle, polarization phase difference). However, there are amplitude and phase errors in practice, which result in the rotation invariance is difficult to satisfy, and the performance of parameter estimation is degraded or even completely invalid. To solve this problem, compression sensing is considered to reduce the complexity of hardware and algorithm and to improve the performance of parameter estimation of polarization-sensitive arrays in the case of amplitude-phase error. Therefore, based on complete electromagnetic vector sensor and tri-orthogonal dipole array, the parameter estimation performance of polarization-sensitive array based on compression sensing is studied. Aiming at the problem of poor precision of parameter estimation of complete electromagnetic vector sensor, a joint polarization-spatial domain VS-OMP (Vector-Sensor Orthogonal Matching Pursuit) compressed sensing spectrum estimation method) based on complete electromagnetic vector and Z-axis polarization direction plane array of magnetic field is proposed. Firstly, the time shift invariance is used to estimate the direction of arrival (DOA) and polarization state of the signals received by the complete electromagnetic vector sensor at the origin of the coordinate axis. Secondly, taking the direction of arrival as the center and the given error range as the radius, the spatial local splicing dictionary of the plane array is established, and then the precise estimation of the direction of arrival is realized by the orthogonal matching tracking method. The simulation results verify the effectiveness of the proposed method, and show that the performance of the method is close to that of the rotating invariant subspace (Estimation of Signal Parameters via Rotational Invariance Techniques,ESPRIT method in the case of single source, but in the case of strong or weak multi-source, the performance of the proposed method is similar to that of the rotation-invariant subspace method. The estimation accuracy of ESPRIT method and VS-OMP method are not high. In view of the coexistence of strong and weak signals and the existence of amplitude and phase errors, a robust compression sensing parameter estimation method based on the separation of strong and weak signals based on three orthogonal dipole arrays is proposed. For the three electric field components received by the triorthogonal dipole array, the direction of arrival (DOA) estimation of the three sets of dipole arrays is realized by using the OMP method, and the numerical average of these three sets of estimation results are obtained. Secondly, the enhancement of weak signal and the suppression of strong signal are realized by the method of shape preserving zero adjustment, and the pollution of polarization information is avoided. Finally, the polarization state of strong and weak target is calculated by solving the normalized electric field vector solution. The simulation results show that the proposed method improves the performance of polarization-spatial parameter estimation in the presence of amplitude-phase errors. In the case of coherent sources, the parameter estimation of coherent sources can be realized without additional processing. In general, compared with the traditional joint polarization-spatial spectral estimation method based on ESPRIT, the performance of polarization-sensitive array parameter estimation can be improved by using compressed sensing method in the case of coherent source and amplitude and phase error.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TN911.7
【相似文獻】
相關(guān)期刊論文 前10條
1 王珊珊;王建英;尹忠科;程旺宗;;壓縮傳感理論在參數(shù)估計中的應(yīng)用[J];計算機工程與應(yīng)用;2010年12期
2 吳雷;李U_尚;;混沌系統(tǒng)參數(shù)估計問題綜述[J];中國高新技術(shù)企業(yè);2012年30期
3 趙永利;;一種多變量CAR模型結(jié)構(gòu)和參數(shù)的辨識方法[J];黑龍江自動化技術(shù)與應(yīng)用;1989年04期
4 敖金剛;魯千紅;蔡春;;實際采集數(shù)據(jù)的參數(shù)估計及其分布檢驗分析[J];空軍雷達學(xué)院學(xué)報;2006年04期
5 楊衛(wèi)鋒;曾芳玲;;區(qū)間分析及其在參數(shù)估計中的應(yīng)用[J];信息技術(shù);2009年04期
6 戴憲華,,黃繼武;一種收斂于全局無偏最優(yōu)解的非線性自回歸(NAR)預(yù)測[J];電子學(xué)報;1997年12期
7 岑翼剛,孫德寶,任毅;利用小波對信號進行去噪及參數(shù)估計[J];現(xiàn)代雷達;2003年03期
8 雷開洪;游慶山;;基于循環(huán)平穩(wěn)特性的直擴信號檢測與參數(shù)估計[J];四川大學(xué)學(xué)報(自然科學(xué)版);2010年01期
9 葛新科,胡保生;參數(shù)估計的Systolic算法[J];控制理論與應(yīng)用;1994年05期
10 高偉;;混沌系統(tǒng)參數(shù)估計結(jié)果的不確定性分析[J];計算機應(yīng)用研究;2010年01期
相關(guān)會議論文 前10條
1 林軍;李壽濤;;基于麥夸爾特法的連續(xù)模型的參數(shù)估計[A];第24屆中國控制與決策會議論文集[C];2012年
2 楊世永;李宏偉;何水明;;乘性和加性噪聲中二維諧波的參數(shù)估計[A];第十二屆全國信號處理學(xué)術(shù)年會(CCSP-2005)論文集[C];2005年
3 馮羽;;參數(shù)估計在汽車工程領(lǐng)域的應(yīng)用[A];“廣汽豐田杯”廣東省汽車行業(yè)第七期學(xué)術(shù)會議論文集[C];2013年
4 歐陽楷;邵頡;劉衛(wèi)芳;李智;李忠誠;單希征;;基于遺傳算法的用于醫(yī)學(xué)診斷的生物神經(jīng)網(wǎng)絡(luò)參數(shù)估計[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號處理學(xué)術(shù)會議論文集[C];1999年
5 顧亞平;許偉杰;朱安玨;劉國安;;一種基于DSP的水下高速運動目標(biāo)的參數(shù)估計[A];中國聲學(xué)學(xué)會1999年青年學(xué)術(shù)會議[CYCA'99]論文集[C];1999年
6 張帆;何青;童調(diào)生;;基于外定界自適應(yīng)約束的集員參數(shù)估計[A];2004全國測控、計量與儀器儀表學(xué)術(shù)年會論文集(上冊)[C];2004年
7 朱勝強;;parscale參數(shù)估計時ridge的v,w參數(shù)設(shè)定對估計結(jié)果的影響[A];全國教育與心理統(tǒng)計與測量學(xué)術(shù)年會暨第八屆海峽兩岸心理與教育測驗學(xué)術(shù)研討會論文摘要集[C];2008年
8 王晗;汪晉寬;薛延波;劉志剛;;無線通信系統(tǒng)中的多路徑參數(shù)估計進展研究[A];中國儀器儀表學(xué)會第六屆青年學(xué)術(shù)會議論文集[C];2004年
9 趙明旺;;方塊脈沖函數(shù)在連續(xù)系統(tǒng)的遞推應(yīng)用:(一)遞推參數(shù)估計[A];1991年控制理論及其應(yīng)用年會論文集(上)[C];1991年
10 陳行勇;王yN;陳海堅;;基于微多普勒像的直升機目標(biāo)參數(shù)估計[A];第十四屆全國信號處理學(xué)術(shù)年會(CCSP-2009)論文集[C];2009年
相關(guān)博士學(xué)位論文 前10條
1 陳琢;混沌在小信號測量與系統(tǒng)參數(shù)估計中的應(yīng)用[D];浙江大學(xué);2004年
2 姚暉;分布式信號源參數(shù)估計技術(shù)研究[D];解放軍信息工程大學(xué);2013年
3 郭賢生;多陣列分布源參數(shù)估計及跟蹤方法研究[D];電子科技大學(xué);2008年
4 秦國棟;微波稀布陣SIAR參數(shù)估計及相關(guān)技術(shù)研究[D];西安電子科技大學(xué);2009年
5 田野;基于稀疏重構(gòu)的陣列信號多參數(shù)估計[D];吉林大學(xué);2014年
6 范影樂;混沌動力學(xué)在參數(shù)估計中的研究[D];浙江大學(xué);2001年
7 易岷;時延及相關(guān)參數(shù)估計技術(shù)研究[D];電子科技大學(xué);2004年
8 李麗;基于FRFT的雙基地MIMO雷達目標(biāo)參數(shù)估計[D];大連理工大學(xué);2013年
9 陳彩云;基于Hausdorff距離的參數(shù)估計收斂性分析[D];哈爾濱工業(yè)大學(xué);2014年
10 陳彩云;基于Hausdorff距離的參數(shù)估計收斂性分析[D];哈爾濱工業(yè)大學(xué);2014年
本文編號:2385403
本文鏈接:http://sikaile.net/kejilunwen/wltx/2385403.html