基于區(qū)域劃分的極化SAR圖像分類(lèi)方法研究
[Abstract]:Polarimetric synthetic Aperture Radar (Polarimetric Synthetic Aperture Radar,POLSAR) polarization has attracted much attention due to its ability to obtain data from multiple polarimetric channels, which is more abundant than that of ordinary SAR. Polarized SAR has important prospects in both military and civil fields. The identification of targets by polarized SAR can effectively help the troops to focus on the important positions of the enemy in the war. Moreover, polarized SAR data provide data basis for geological hazard detection and assessment, sea ice thickness detection, forest fire detection and so on. At present, the research on the application of polarized SAR is a hot spot. It is of great significance to make full use of polarized SAR data to obtain information. As an important part of polarimetric SAR image interpretation, polarimetric SAR image classification has also been paid attention to in the field of international remote sensing, and has become an important research direction. 1. A polarimetric SAR image classification method based on nearest neighbor propagation clustering and regional growth is proposed in this paper. The algorithm is mainly based on feature extraction and watershed algorithm to get the results of region over-segmentation, and then the region based K-means algorithm is used to divide the initial region to reduce the number of over-segmented regions. Then the region based nearest neighbor propagation clustering is used to classify the image, and the spatial correlation of the image is fully considered, and the region growth method is used to improve the classification accuracy. Finally, the classification results are obtained by the Wishart classification of the boundary points. By using the homogeneous region obtained by over-segmentation as the classification unit, the effect of speckle in polarimetric data is effectively reduced and the classification accuracy is improved by 2.2. In this paper, an improved watershed based region division method is proposed. The over-segmented region obtained from the watershed is taken as the analysis unit, the spatial information of the region is fully utilized, the adjacent information of each region is obtained, and the combined evaluation value of the adjacent region is calculated by combining with the edge punishment. Merging each other is the most suitable adjacent region for merging, and obtains the result of regional division, which greatly reduces the number of over-segmented regions and effectively combines the adjacent regions with the same features in homogeneous regions. And the edge of the region remains good. 3. In this paper, an unsupervised polarimetric SAR image classification method based on region partition is proposed. Through a new method of polarization feature extraction and edge strength calculation, the watershed algorithm is used to obtain the over-segmentation results, and then the improved watershed based region partition method is used to divide the over-segmented small area into larger regions. Finally, the region based nearest neighbor propagation clustering and a Wishart classifier considering spatial correlation are used to classify, and the final classification results are obtained. The classification method can get better classification results.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TN957.52
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 杜玫芳;;數(shù)字圖書(shū)館中圖像分類(lèi)技術(shù)研究[J];現(xiàn)代計(jì)算機(jī)(專(zhuān)業(yè)版);2008年01期
2 周曉光;匡綱要;萬(wàn)建偉;;極化SAR圖像分類(lèi)綜述[J];信號(hào)處理;2008年05期
3 秦磊;高文;;基于內(nèi)容相關(guān)性的場(chǎng)景圖像分類(lèi)方法[J];計(jì)算機(jī)研究與發(fā)展;2009年07期
4 楊懌菲;;一種基于圖像特征的圖像分類(lèi)方法[J];現(xiàn)代電子技術(shù);2009年14期
5 畢萍;;圖像分類(lèi)方法的對(duì)比研究[J];現(xiàn)代電子技術(shù);2009年18期
6 孟海東;郝永寬;王淑玲;;聚類(lèi)分析在非監(jiān)督圖像分類(lèi)中的應(yīng)用研究[J];計(jì)算機(jī)與現(xiàn)代化;2009年10期
7 姚曉昆;邱桃榮;葛寒娟;劉清;王劍;;基于多層次相容粒度的圖像分類(lèi)[J];河北師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年01期
8 郭立君;趙杰煜;史忠植;;生成模型與判別方法相融合的圖像分類(lèi)方法[J];電子學(xué)報(bào);2010年05期
9 黃濤;陳三風(fēng);;人工場(chǎng)景圖像分類(lèi)技術(shù)研究[J];深圳信息職業(yè)技術(shù)學(xué)院學(xué)報(bào);2010年02期
10 張杰;郭小川;金城;陸偉;;基于特征互補(bǔ)率矩陣的圖像分類(lèi)方法[J];計(jì)算機(jī)工程;2011年04期
相關(guān)會(huì)議論文 前10條
1 鄭海紅;曾平;;一種基于圖像分類(lèi)的逆半調(diào)算法[A];’2004計(jì)算機(jī)應(yīng)用技術(shù)交流會(huì)議論文集[C];2004年
2 文振q;歐陽(yáng)杰;朱為總;;基于語(yǔ)義特征與支持向量機(jī)的圖像分類(lèi)[A];中國(guó)電子學(xué)會(huì)第十六屆信息論學(xué)術(shù)年會(huì)論文集[C];2009年
3 王海峰;管亮;;基于顏色特征的圖像分類(lèi)技術(shù)在油品分析中的應(yīng)用[A];中國(guó)儀器儀表學(xué)會(huì)第六屆青年學(xué)術(shù)會(huì)議論文集[C];2004年
4 陳思坤;吳洪;;基于圖分塊并利用空間金字塔的醫(yī)學(xué)圖像分類(lèi)[A];第六屆和諧人機(jī)環(huán)境聯(lián)合學(xué)術(shù)會(huì)議(HHME2010)、第19屆全國(guó)多媒體學(xué)術(shù)會(huì)議(NCMT2010)、第6屆全國(guó)人機(jī)交互學(xué)術(shù)會(huì)議(CHCI2010)、第5屆全國(guó)普適計(jì)算學(xué)術(shù)會(huì)議(PCC2010)論文集[C];2010年
5 張淑雅;趙曉宇;趙一鳴;李均利;;基于SVM的圖像分類(lèi)[A];第十三屆全國(guó)圖象圖形學(xué)學(xué)術(shù)會(huì)議論文集[C];2006年
6 李博;韓萍;;基于壓縮感知和SVM的極化SAR圖像分類(lèi)[A];第二十七屆中國(guó)(天津)2013IT、網(wǎng)絡(luò)、信息技術(shù)、電子、儀器儀表創(chuàng)新學(xué)術(shù)會(huì)議論文集[C];2013年
7 朱松豪;胡娟娟;孫偉;;基于非歐空間高階統(tǒng)計(jì)的圖像分類(lèi)方法[A];第25屆中國(guó)控制與決策會(huì)議論文集[C];2013年
8 潘海為;李建中;張煒;;基于像素聚類(lèi)的腦部醫(yī)學(xué)圖像分類(lèi)[A];第二十屆全國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(研究報(bào)告篇)[C];2003年
9 吳霜;張一飛;修非;王大玲;鮑玉斌;于戈;;基于興趣點(diǎn)特征提取的醫(yī)學(xué)圖像分類(lèi)[A];第二十四屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(研究報(bào)告篇)[C];2007年
10 武進(jìn);尹愷;王長(zhǎng)明;張家才;;SVDM在蔬菜病害圖像分類(lèi)中的應(yīng)用[A];圖像圖形技術(shù)與應(yīng)用進(jìn)展——第三屆圖像圖形技術(shù)與應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2008年
,本文編號(hào):2381458
本文鏈接:http://sikaile.net/kejilunwen/wltx/2381458.html