基于系統(tǒng)碼的深空時(shí)變信道傳輸策略研究
[Abstract]:Deep space exploration has very important scientific value and economic significance, among which the effective implementation of deep space communication is the key to ensure the success of the deep space exploration mission. With the increasingly arduous task of deep space communication, Ka band with higher transmission speed and wider bandwidth will be selected in the future. However, although Ka band can increase the data throughput of the downlink, it is vulnerable to the weather change, which leads to the decrease of the efficiency of the transmission process. Because of the dynamic change of near-earth weather, the downlink of Ka band is time-varying channel. For the time-varying channel, the traditional fixed transmission rate link scheme is used to limit the effective throughput of the link and even interrupt the link, so this paper proposes an adaptive transmission rate scheme to deal with the change of BER in time-varying channel. At the same time, the system throughput of deep space Ka band downlink will be increased. The design of adaptive transmission scheme requires channel modeling based on deep space Ka band downlink and channel prediction based on channel model. However, compared with the actual channel state, the channel prediction results will have errors, so the receiver feedback and forward erasure techniques are needed to reduce the impact of prediction errors on the system throughput. This paper focuses on how to further improve the system throughput. In order to reduce the downlink throughput loss caused by the variation of near-Earth weather, a time-varying channel prediction model, Gilbert-Elliot model, is established by combining the rain decline parameters and equivalent noise temperature of the near-Earth atmosphere. At the same time, based on this channel model, the threshold of two channel threshold strategies is calculated, and the GE channel model with optimal threshold strategy is designed under the background of deep space, which provides a platform for the next design of channel prediction algorithm combined with transmission protocol. In order to avoid the problem that the prediction error is too large because the prediction step is too long, the LTP/BP protocol, which can deal with discontinuous transmission, large delay and high bit error rate, is adopted to feedback the ground weather state, thus avoiding the problem of long prediction step. In this paper, a file transfer mode based on asynchronous LTP/BP (Licklider Transmission Protocol/Bundle Protocol) protocol is proposed. Combining the characteristics of LTP transmission mode, a channel state prediction model based on Ka band is designed to improve the global throughput of downlink in Ka band. The system fountain code is introduced into the forward erasure technology. The system code is no bit rate code and has no fixed transmission rate. Therefore, when the channel condition is "good", the sender chooses to transmit at high transmission rate. When the channel condition is "bad" state, select low transmission rate transmission. According to the influence of weather state change on the downlink packet loss rate of Ka band, the fountain code rate of the system can be adjusted adaptively to ensure the continuous communication of the Ka band data link and improve the downlink throughput of Ka band effectively.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN927.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 戴耀森;關(guān)于《雙平穩(wěn)時(shí)變信道的序列檢測(cè)》的評(píng)注[J];通信學(xué)報(bào);1981年04期
2 李建芬,李農(nóng);時(shí)變信道通信中的多級(jí)蔡氏混沌同步[J];空軍工程大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年03期
3 李育杉,戴憲華;小波建模在時(shí)變信道盲識(shí)別中的應(yīng)用[J];電路與系統(tǒng)學(xué)報(bào);2002年02期
4 馬軍;時(shí)變信道中信號(hào)的準(zhǔn)確恢復(fù)[J];廣西物理;2002年04期
5 黨小川,吳佑壽,符劍;數(shù)字并行接收機(jī)在時(shí)變信道下的信道估計(jì)與均衡方法[J];電訊技術(shù);2005年02期
6 馬典軍;葛萬成;;基于統(tǒng)計(jì)自回歸模型的時(shí)變信道均衡[J];電子技術(shù);2010年12期
7 崔皓;葛萬成;;基于有限階最優(yōu)模型的時(shí)變信道均衡[J];電子技術(shù);2010年12期
8 楊正舉;劉洛琨;錢學(xué)鋒;孫有銘;;基于基展開模型的時(shí)變信道階數(shù)和徑數(shù)盲估計(jì)[J];信息工程大學(xué)學(xué)報(bào);2012年03期
9 張帥;張曉林;;星地鏈路高速數(shù)傳系統(tǒng)快時(shí)變信道估計(jì)方法[J];遙測(cè)遙控;2013年06期
10 李道本;雙平穩(wěn)時(shí)變信道的序列檢測(cè)[J];通信學(xué)報(bào);1981年01期
相關(guān)會(huì)議論文 前2條
1 李農(nóng);張智軍;李建芬;;時(shí)變信道時(shí)混沌通訊系統(tǒng)的同步[A];第九屆全國信號(hào)處理學(xué)術(shù)年會(huì)(CCSP-99)論文集[C];1999年
2 任術(shù)波;郭俊奇;項(xiàng)海格;;基于SFBC-OFDM系統(tǒng)的時(shí)變信道估計(jì)和信號(hào)檢測(cè)聯(lián)合算法[A];2009年通信理論與信號(hào)處理學(xué)術(shù)年會(huì)論文集[C];2009年
相關(guān)博士學(xué)位論文 前4條
1 李勇;快速時(shí)變信道下基于WFRFT和部分FFT的傳輸方法[D];哈爾濱工業(yè)大學(xué);2014年
2 劉翼;基于壓縮感知的OFDM系統(tǒng)快速時(shí)變信道估計(jì)[D];北京理工大學(xué);2015年
3 任大孟;快速時(shí)變信道下無線OFDM系統(tǒng)信道估計(jì)技術(shù)的研究[D];哈爾濱工程大學(xué);2009年
4 秦文;OFDM系統(tǒng)中子載波間干擾的產(chǎn)生因素及消除研究[D];電子科技大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 趙磊;高移動(dòng)場(chǎng)景下超奈奎斯特與時(shí)域重疊復(fù)用傳輸性能分析[D];西南交通大學(xué);2015年
2 謝佳品;基于QAM與時(shí)變信道下的OFDM同步技術(shù)研究[D];電子科技大學(xué);2014年
3 唐佩;基于QAM的時(shí)變信道下的OFDM信道估計(jì)與均衡技術(shù)研究[D];電子科技大學(xué);2014年
4 于淼;基于系統(tǒng)碼的深空時(shí)變信道傳輸策略研究[D];哈爾濱工業(yè)大學(xué);2014年
5 楊正舉;時(shí)變信道盲辨識(shí)算法研究[D];解放軍信息工程大學(xué);2012年
6 張士杰;超寬帶無線通信系統(tǒng)中時(shí)變信道估計(jì)方法研究[D];河南科技大學(xué);2014年
7 顧夏s,
本文編號(hào):2380160
本文鏈接:http://sikaile.net/kejilunwen/wltx/2380160.html