天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

多類運(yùn)動(dòng)想象腦電模式識(shí)別及其在電動(dòng)輪椅控制上的應(yīng)用

發(fā)布時(shí)間:2018-09-13 16:47
【摘要】:腦-機(jī)接口是一種不依賴外周神經(jīng)和肌肉組織的參與,在大腦和計(jì)算機(jī)或其他電子設(shè)備之間直接建立交流和控制通路的技術(shù),從而將大腦信號(hào)解讀成相應(yīng)的命令來實(shí)現(xiàn)與外部世界的交流與控制。該技術(shù)不僅具有重要的理論研究價(jià)值,還具有實(shí)際的應(yīng)用前景,已成為生物醫(yī)學(xué)工程領(lǐng)域的研究熱點(diǎn)之一,而基于運(yùn)動(dòng)想象腦電信號(hào)的研究是腦-機(jī)接口的一個(gè)重要分支。 本文的研究建立在國家自然科學(xué)基金資助項(xiàng)目(61201302)的要求上,從課題的研究背景及意義出發(fā),介紹了腦電信號(hào)的特點(diǎn),分析了運(yùn)動(dòng)想象腦電信號(hào)的預(yù)處理、特征提取、模式分類的方法。本文進(jìn)一步介紹了本文腦電信號(hào)的采集裝置及方案,并通過其對(duì)腦電信號(hào)進(jìn)行處理,然后將特定的運(yùn)動(dòng)想象任務(wù)轉(zhuǎn)化為與其相對(duì)應(yīng)的控制命令,最后輸入到電動(dòng)輪椅上,控制其完成特定的運(yùn)動(dòng)。本文完成了以下研究工作,并取得了一些研究成果: (1)腦電信號(hào)預(yù)處理階段:本文采用優(yōu)化的廣義權(quán)重估計(jì)算法對(duì)腦電信號(hào)進(jìn)行預(yù)處理,它可以在一定程度上消除與運(yùn)動(dòng)無關(guān)的信號(hào),同時(shí)也可以增強(qiáng)運(yùn)動(dòng)想象的信噪比,從而為腦電信號(hào)的特征提取和模式分類提供好的基礎(chǔ)條件。 (2)腦電信號(hào)特征提取階段:從常規(guī)運(yùn)動(dòng)想象激活的局部腦區(qū)分析的角度出發(fā),考慮到運(yùn)動(dòng)想象腦電信號(hào)中存在很多與運(yùn)動(dòng)想象無關(guān)的頻率信號(hào),而共空間模式特征提取方法缺少對(duì)頻率信息的處理,本文提出了一種雙樹復(fù)小波與共空間模式相結(jié)合的特征提取方法。該方法首先選取特定通道的腦電信號(hào),然后利用雙樹復(fù)小波多尺度分解,獲取適當(dāng)?shù)念l段,接著將各頻段的信號(hào)聯(lián)合起來輸入到空間濾波器中,從而得到所需的特征向量。此外,從復(fù)雜腦功能網(wǎng)絡(luò)的角度出發(fā),又提出了一種基于腦功能網(wǎng)絡(luò)鄰接矩陣分解的新方法。該方法首先采用多通道運(yùn)動(dòng)想象腦電信號(hào)構(gòu)建腦功能網(wǎng)絡(luò),然后對(duì)相應(yīng)的鄰接矩陣進(jìn)行奇異值分解,依據(jù)矩陣奇異值特征向量定義了腦電的特征參數(shù),最后將其組合為特征向量。 (3)腦電信號(hào)模式分類階段:為了提高BCI系統(tǒng)中分類精度和分類速度,提出了一種基于深度自編碼降維的主軸動(dòng)態(tài)核聚類分類方法。首先,為了降低特征向量之間的相關(guān)性和計(jì)算的復(fù)雜度,引入深度自編碼方法將特征向量進(jìn)行降維處理,然后利用主軸動(dòng)態(tài)核聚類分類進(jìn)行分類識(shí)別。另外,由于支持向量機(jī)能夠解決小樣本估計(jì)、非線性、非平穩(wěn)信號(hào)的分類問題,所以本文設(shè)計(jì)了基于多核學(xué)習(xí)支持向量機(jī)的多類分類器,可使分布復(fù)雜的數(shù)據(jù)信息在高維的特征空間中得到更充分的體現(xiàn),在減少支持向量數(shù)目的同時(shí)提高分類精度。 (4)電動(dòng)輪椅控制實(shí)驗(yàn):首先設(shè)計(jì)四類運(yùn)動(dòng)想象的實(shí)驗(yàn)范式,并采集相應(yīng)的腦電信號(hào),然后將利用優(yōu)化的廣義權(quán)重估計(jì)算法實(shí)現(xiàn)盲源分離,接著采用雙樹復(fù)小波-共空間模式相結(jié)合的方法提取出腦電特征向量,進(jìn)而使用多核學(xué)習(xí)支持向量機(jī)多類分類器對(duì)所得特征向量進(jìn)行分類識(shí)別,,最后將識(shí)別結(jié)果轉(zhuǎn)化為控制命令控制電動(dòng)輪椅運(yùn)動(dòng),三名受試者的平均正確率分別為66.78%,76.58%和72.53%。
[Abstract]:Brain-computer interface (BCI) is a technology that directly establishes communication and control channels between brain and computer or other electronic devices without the involvement of peripheral nerves and muscle tissues, thus interpreting brain signals into corresponding commands to achieve communication and control with the outside world. This technology is not only of great theoretical value, but also of great theoretical value. It has practical application prospects and has become one of the hotspots in the field of biomedical engineering. The study of EEG based on motor imagery is an important branch of brain-computer interface.
This paper is based on the requirement of the project supported by the National Natural Science Foundation of China (61201302). Starting from the research background and significance of the subject, the characteristics of EEG signals are introduced, and the methods of pretreatment, feature extraction and pattern classification of motor imagery EEG signals are analyzed. This paper completes the following research work and achieves some research results:1.
(1) EEG signal preprocessing stage: This paper uses the optimized generalized weight estimation algorithm to preprocess the EEG signal, which can eliminate the motion-independent signal to a certain extent, but also can enhance the signal-to-noise ratio of motor imagination, thus providing a good basis for feature extraction and pattern classification of EEG signal.
(2) Feature extraction of EEG signals: From the point of view of the analysis of local brain regions activated by conventional motor imagery, considering that there are many frequencies unrelated to motor imagery in motor imagery EEG signals, and the common spatial pattern feature extraction method lacks the processing of frequency information, this paper proposes a dual-tree complex wavelet and common space. First, the EEG signals of a specific channel are selected, and then the appropriate frequency bands are obtained by the dual-tree complex wavelet multi-scale decomposition. Then, the signals of each frequency band are jointly input into the spatial filter to obtain the desired eigenvectors. A new method based on the adjacency matrix decomposition of the brain functional network is proposed. Firstly, the brain functional network is constructed by using multi-channel motor imagery EEG signals, and then the corresponding adjacency matrix is singular value decomposition (SVD). According to the singular value eigenvector of the matrix, the characteristic parameters of the EEG are defined and combined into the eigenvector.
(3) EEG pattern classification stage: In order to improve the classification accuracy and speed in BCI system, a dynamic clustering classification method based on deep self-coding dimensionality reduction is proposed. In addition, support vector machine can solve the problem of small sample estimation, non-linear, non-stationary signal classification, so this paper designs a multi-class classifier based on multi-kernel learning support vector machine, which can make the distributed complex data information get more in the high-dimensional feature space. It fully reflects that the classification accuracy can be improved while reducing the number of support vectors.
(4) Electric wheelchair control experiment: Firstly, four kinds of experimental paradigms of motion imagery are designed, and corresponding EEG signals are collected. Then the optimized generalized weight estimation algorithm is used to realize blind source separation. Then, the EEG feature vectors are extracted by the method of dual-tree complex wavelet-common-space pattern, and then the multi-kernel learning support vector is used. Finally, the recognition results are converted into control commands to control the motion of the electric wheelchair. The average accuracy of the three subjects is 66.78%, 76.58% and 72.53% respectively.
【學(xué)位授予單位】:杭州電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN911.7

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 黃思娟;吳效明;;基于能量特征的腦電信號(hào)特征提取與分類[J];傳感技術(shù)學(xué)報(bào);2010年06期

2 王攀;沈繼忠;施錦河;;想象左右手運(yùn)動(dòng)的腦電特征提取[J];傳感技術(shù)學(xué)報(bào);2010年09期

3 羅志增;曹銘;;基于多尺度Lempel-Ziv復(fù)雜度的運(yùn)動(dòng)想象腦電信號(hào)特征分析[J];傳感技術(shù)學(xué)報(bào);2011年07期

4 周顏軍,王雙成,王輝;基于貝葉斯網(wǎng)絡(luò)的分類器研究[J];東北師大學(xué)報(bào)(自然科學(xué)版);2003年02期

5 徐寶國;宋愛國;費(fèi)樹岷;;在線腦機(jī)接口中腦電信號(hào)的特征提取與分類方法[J];電子學(xué)報(bào);2011年05期

6 劉高平;趙杜娟;黃華;;基于自編碼神經(jīng)網(wǎng)絡(luò)重構(gòu)的車牌數(shù)字識(shí)別[J];光電子.激光;2011年01期

7 龔衛(wèi)國;劉曉營;李偉紅;李建福;;雙密度雙樹復(fù)小波變換的局域自適應(yīng)圖像去噪[J];光學(xué)精密工程;2009年05期

8 宋恒,張楊;基于模式識(shí)別技術(shù)的股票市場(chǎng)技術(shù)分析研究[J];計(jì)算機(jī)仿真;2004年07期

9 汪洪橋;孫富春;蔡艷寧;陳寧;丁林閣;;多核學(xué)習(xí)方法[J];自動(dòng)化學(xué)報(bào);2010年08期

10 楊新亮;羅志增;;OGWE算法及其在表面肌電信號(hào)中的應(yīng)用[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年S2期

相關(guān)博士學(xué)位論文 前3條

1 周鵬;基于運(yùn)動(dòng)想象的腦機(jī)接口的研究[D];天津大學(xué);2007年

2 趙啟斌;EEG時(shí)空特征分析及其在BCI中的應(yīng)用[D];上海交通大學(xué);2008年

3 劉美春;基于運(yùn)動(dòng)想象的腦—機(jī)接口系統(tǒng)模式識(shí)別算法研究[D];華南理工大學(xué);2009年



本文編號(hào):2241759

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/wltx/2241759.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶dfdbd***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
亚洲精品高清国产一线久久| 91精品欧美综合在ⅹ| 国产专区亚洲专区久久| 国产又粗又猛又大爽又黄同志| 欧美老太太性生活大片| 草草视频精品在线观看| 亚洲av秘片一区二区三区| 在线免费国产一区二区| 国产成人精品一区二三区在线观看| 国产偷拍精品在线视频| 国产精品福利一级久久| 亚洲国产av精品一区二区| 精品少妇人妻av一区二区蜜桃| 人人爽夜夜爽夜夜爽精品视频 | 日韩和欧美的一区二区三区 | 视频在线播放你懂的一区| 中文字幕亚洲人妻在线视频| 国产女性精品一区二区三区| 亚洲少妇一区二区三区懂色| 欧美韩日在线观看一区| 精品一区二区三区三级视频| 欧美日韩国产精品第五页| 国产精品涩涩成人一区二区三区 | 老熟女露脸一二三四区| 欧美日韩国产福利在线观看| 91插插插外国一区二区| 91人妻人人揉人人澡人| 有坂深雪中文字幕亚洲中文 | 亚洲熟女一区二区三四区| 久久福利视频这里有精品| 亚洲黄香蕉视频免费看| 美女被后入视频在线观看| 免费啪视频免费欧美亚洲| 黄色日韩欧美在线观看| 日本免费一区二区三女| 最近的中文字幕一区二区| 免费国产成人性生活生活片| 亚洲一区二区三区四区| 2019年国产最新视频| 国产又色又爽又黄又大| 在线一区二区免费的视频|