無(wú)跡卡爾曼濾波及其在SINS初始對(duì)準(zhǔn)中的應(yīng)用
[Abstract]:Initial alignment is a key technology of sins (Strapdown Inertial Navigation System,SINS. Filtering (state estimation) plays an important role in initial alignment. When the error model is linear, the classical Kalman filter has a very good estimation effect. When the error model is nonlinear, the estimation effect of different nonlinear filtering methods is different. Unscented Kalman filter (Unscented Kalman Filter, UKF) is an excellent nonlinear filtering method. Since its birth, it has been widely used in engineering. It is very important for the filtering accuracy and stability of UKF to adjust the parameter 魏 freely. Traditionally, it is considered that the filtering accuracy is optimal when n 魏 = 3 (n is the dimension of the state variable). However, with the production of volumetric Kalman filter (Cubature Kalman Filter,CKF), the traditional value of freely adjusted parameters is faced with great problems. Because from the view of filtering method, CKF filter is a special case of UKF filter when the parameter 魏 = 0. Under different dimensions, the accuracy of the two filtering methods is different. Therefore, the effect of 魏 on the accuracy of UKF filtering is mainly studied with the freely adjusted parameters as the core. At the same time, two modelled UKF algorithms are given to solve the problem of linear equations in the filter model. In this paper, the distribution characteristics of gravity field, two definitions of earth shape, and the definitions of longitude and latitude are introduced. The coordinate system and coordinate transformation are introduced in detail, and the error equation of strapdown inertial navigation system is derived. In this paper, the process of extended and non-extended UT transform is given, and the extended and non-extended UKF filtering algorithms are also given. For the comparison of the accuracy of the two filtering algorithms, the expressions of extended and non-extended UKF based on Taylor expansion are derived, and the accuracy of the two filtering methods under different dimensions and different adjusting parameters are analyzed. At the same time, the accuracy of the two filtering methods is compared based on the mean, variance and odd moment. It is pointed out that it is better to choose extended or non-extended UKF under two adjusting parameters. At the same time, the expression of the mean approximation error of UKF is deduced, and the correlation between the value of 魏 and the system model is proved. Furthermore, an online adjustment algorithm of 魏, self-tuning UKF algorithm, is proposed. The first step of the whole algorithm is to select the value of 魏 according to the model, so that the error of estimation can be minimized under several pre-set 魏. Then the filter is adjusted online according to the one-step prediction information of the measurement at every time, which makes the filter estimate to be optimal. Compared with the UKF, with fixed parameters, the estimation accuracy of the online adjustment algorithm will be improved. If one of the equations of state or measurement is linear, the UKF algorithm is simplified and two modelled UKF. are derived. In this paper, the computational complexity of two modeling UKF algorithms is analyzed quantitatively. Compared with the traditional UKF algorithm, the computational complexity of the two modeling algorithms will be reduced at the same time as the accuracy will not be reduced. Finally, according to the characteristics of SINS error model, self-adjusting UKF and modelled UKF are applied to initial alignment to solve the problems of low accuracy and large computational complexity of traditional UKF estimation, respectively. The simulation results show the effectiveness of the two nonlinear filtering algorithms and provide a strong theoretical guarantee for practical engineering applications.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN713;TN96
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫楓;唐李軍;;Cubature卡爾曼濾波與Unscented卡爾曼濾波估計(jì)精度比較[J];控制與決策;2013年02期
2 孫楓;唐李軍;;基于CKF的SINS大方位失準(zhǔn)角初始對(duì)準(zhǔn)[J];儀器儀表學(xué)報(bào);2012年02期
3 穆靜;蔡遠(yuǎn)利;;迭代容積卡爾曼濾波算法及其應(yīng)用[J];系統(tǒng)工程與電子技術(shù);2011年07期
4 戴邵武;鄭智翔;戴洪德;曹亮杰;;非線性濾波在捷聯(lián)慣導(dǎo)系統(tǒng)初始對(duì)準(zhǔn)中的應(yīng)用[J];海軍航空工程學(xué)院學(xué)報(bào);2011年01期
5 周衛(wèi)東;喬相偉;吉宇人;孟凡彬;;基于新息和殘差的自適應(yīng)UKF算法[J];宇航學(xué)報(bào);2010年07期
6 王婷婷;郭圣權(quán);;粒子濾波算法的綜述[J];儀表技術(shù);2009年06期
7 趙琳;王小旭;丁繼成;曹偉;;組合導(dǎo)航系統(tǒng)非線性濾波算法綜述[J];中國(guó)慣性技術(shù)學(xué)報(bào);2009年01期
8 嚴(yán)恭敏;嚴(yán)衛(wèi)生;徐德民;;簡(jiǎn)化UKF濾波在SINS大失準(zhǔn)角初始對(duì)準(zhǔn)中的應(yīng)用[J];中國(guó)慣性技術(shù)學(xué)報(bào);2008年03期
9 馬建軍;鄭志強(qiáng);;基于插值非線性濾波的SINS靜基座初始對(duì)準(zhǔn)[J];系統(tǒng)仿真學(xué)報(bào);2007年12期
10 張衛(wèi)明;張繼惟;范子杰;鐘山;;UKF方法在慣性導(dǎo)航系統(tǒng)初始對(duì)準(zhǔn)中的應(yīng)用研究[J];系統(tǒng)工程與電子技術(shù);2007年04期
相關(guān)博士學(xué)位論文 前8條
1 張?chǎng)蚊?非線性濾波在通信與導(dǎo)航中的應(yīng)用研究[D];北京郵電大學(xué);2012年
2 唐李軍;Cubature卡爾曼濾波及其在導(dǎo)航中的應(yīng)用研究[D];哈爾濱工程大學(xué);2012年
3 張義;艦船捷聯(lián)慣性系統(tǒng)初始對(duì)準(zhǔn)技術(shù)研究[D];哈爾濱工程大學(xué);2012年
4 趙桂玲;船用光纖捷聯(lián)慣導(dǎo)系統(tǒng)標(biāo)定與海上對(duì)準(zhǔn)技術(shù)研究[D];哈爾濱工程大學(xué);2011年
5 朱胤;非線性濾波及其在跟蹤制導(dǎo)中的應(yīng)用[D];哈爾濱工業(yè)大學(xué);2009年
6 徐佳鶴;基于UKF的濾波算法設(shè)計(jì)分析與應(yīng)用[D];東北大學(xué);2008年
7 武元新;對(duì)偶四元數(shù)導(dǎo)航算法與非線性高斯濾波研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2005年
8 李濤;非線性濾波方法在導(dǎo)航系統(tǒng)中的應(yīng)用研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2003年
相關(guān)碩士學(xué)位論文 前2條
1 陸海勇;捷聯(lián)慣性導(dǎo)航系統(tǒng)中UKF濾波技術(shù)的應(yīng)用研究[D];南京航空航天大學(xué);2009年
2 王進(jìn);捷聯(lián)慣導(dǎo)系統(tǒng)羅經(jīng)對(duì)準(zhǔn)方法研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2005年
,本文編號(hào):2224018
本文鏈接:http://sikaile.net/kejilunwen/wltx/2224018.html