文本無關的多說話人確認研究
[Abstract]:In recent years, in the field of biometrics, speaker recognition has attracted more and more attention because of its unique advantages of security, economy and accuracy, and has gradually become an important way of identity verification in people's lives and work. It has broad market prospects. This paper begins with the system framework of speaker verification, and then introduces each part of the system in detail. Then, aiming at the speaker verification under complex conditions, it focuses on feature extraction, speaker segmentation, model building and other technologies. The main research work and innovation of this paper are as follows: 1. Based on the GMM-UBM speaker verification system as the baseline system of this paper, the related factors affecting the performance of the system are studied and analyzed, including Gaussian mixture, training speech length, scoring regularization technology, and verified by experiments. 2. In feature extraction, in order to improve the performance of speaker verification system in noisy environment, this paper proposes a method to improve the performance of the system. A multi-window spectral subtraction MFCC feature with strong noise robustness is proposed. The multi-window spectral subtraction MFCC is an improvement on the existing multi-window spectral MFCC (Multitaper MFCC), which combines the multi-window spectral estimation technique with the spectral subtraction method. The simulation results show that when the test speech contains additive noise, it is better than the multi-window spectral MFCC extraction algorithm. The speaker verification system using multi-window spectral subtraction MFCC achieves good results in EER with equal error rate and minDCF with minimum detection cost function. In order to improve the segmentation speed and accuracy at the same time, this paper first proposes a three-step segmentation strategy to implement the BIC speaker segmentation algorithm. The experimental results show that the improved segmentation algorithm has a great improvement in segmentation speed and accuracy. 4. In the aspect of model building, I-vector speaker modeling technology is explored and studied, especially the extraction process of I-vector and the construction of I-vector based speaker. The speaker recognition system is analyzed and compared with the speaker verification system based on GMM-UBM.
【學位授予單位】:電子科技大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TN912.34
【共引文獻】
相關期刊論文 前10條
1 賀前華;王志鋒;Alexander I Rudnicky;朱錚宇;李新超;;基于改進PNCC特征和兩步區(qū)分性訓練的錄音設備識別方法[J];電子學報;2014年01期
2 黃奮;馬皓;鄧菁;;說話人識別技術在社保系統中的遠程身份認證應用研究[J];電子技術與軟件工程;2014年02期
3 馬勇;鮑長春;;基于稀疏神經網絡的說話人分割[J];北京工業(yè)大學學報;2015年05期
4 李晉;郭武;戴禮榮;;聯合因子分析算法中基于信號子空間的空間變換方法[J];模式識別與人工智能;2013年08期
5 楊棟;周秀玲;郭平;;基于貝葉斯通用背景模型的圖像標注[J];自動化學報;2013年10期
6 祝太鋒;;基于動態(tài)反饋負載均衡算法的改進[J];湖南農機;2013年11期
7 駱啟帆;章堅武;吳震東;;一種基于MFCC與韻律特征的說話人確認方法[J];杭州電子科技大學學報;2013年05期
8 陳麗萍;王爾玉;戴禮榮;宋彥;;基于深層置信網絡的說話人信息提取方法[J];模式識別與人工智能;2013年12期
9 廖曉鋒;范修斌;姜青山;;基于協方差的高斯混合模型參數學習算法[J];計算機科學;2013年S2期
10 郭心語;何曉豐;宮學慶;張蓉;周傲英;;一種基于曝光量和點擊率的用戶組優(yōu)化策略[J];計算機研究與發(fā)展;2013年S1期
相關會議論文 前6條
1 駱啟帆;章堅武;吳震東;;一種基于MFCC與韻律特征的說話人確認方法[A];浙江省電子學會2013學術年會論文集[C];2013年
2 尹聰;白靜;龔[,
本文編號:2206917
本文鏈接:http://sikaile.net/kejilunwen/wltx/2206917.html