陽煤集團(tuán)視頻異常監(jiān)控系統(tǒng)設(shè)計與實現(xiàn)
[Abstract]:Along with the development of the times, the progress of science and technology not only brings convenience to us, but also brings all kinds of latent or emerging crises. At present, the monitoring system has spread all over the major banks, supermarkets, residential areas, mainly because people are unable to guard against criminal acts. However, if there is monitoring, can we rest assured? obviously, the answer is no. With the technical refinement of the perpetrators, the definition of criminal behavior is more precise. In order to ensure group security, abnormal monitoring becomes particularly important, and intelligent management and monitoring will greatly reduce manpower work and unnecessary trouble. Based on this requirement, this paper tries to introduce new ideas. The technology of abnormal scene monitoring in video content is to use the camera to view the scene and the computer to analyze the data of the scene without human intervention to realize the discovery of the abnormal object in the static scene. The development of video scene abnormal monitoring technology and integration into the normal video surveillance system will effectively improve the monitoring ability, reduce the hidden dangers of insecurity, at the same time, can save human and material resources to a certain extent and save investment. The research of abnormal scene monitoring technology in video content can supplement and extend the existing video exception processing system and can be placed in the video monitoring system as the basic link to simplify the processing process and improve the processing efficiency. This paper mainly discusses some problems existing in the existing monitoring system, and attempts to innovate the system based on these problems. Firstly, it describes the technology and methods used in the system development, and then introduces the main functions of each module in the system. The next step is to examine the existing systems, and finally to analyze the defects in the molecular system and where improvements can be made. In the recognition of abnormal behavior, the discriminant criterion of human abnormal behavior is given by using the characteristics of abnormal behavior. In order to determine whether the target in a specific monitoring area, such as changes, climbing, residual objects and other abnormal conditions, and issued an alarm. The experimental results show that the proposed method is simple, fast and accurate. The research and development of this system has not only greatly improved the working efficiency of the relevant staff and freed them from the heavy work, but also, to our credit, the development of this technology has improved the accuracy and resolution of the monitoring system. Can effectively reduce judgment errors, thereby avoiding unnecessary trouble.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TP391.41;TN948.6
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 羅超宇;;基于視頻序列的人體異常行為檢測技術(shù)分析[J];電子制作;2013年18期
2 崔永艷;高陽;;基于多示例學(xué)習(xí)的異常行為檢測方法[J];模式識別與人工智能;2011年06期
3 陸海先;郭立;桂樹;謝錦生;;基于潛在主題的視頻異常行為分析[J];通信技術(shù);2012年07期
4 周維柏;李蓉;;基于軌跡特征分析的行人異常行為識別[J];電腦編程技巧與維護(hù);2010年12期
5 李曉東;凌捷;;基于視頻監(jiān)控參考量的異常行為檢測研究[J];計算機(jī)技術(shù)與發(fā)展;2012年09期
6 姬曉飛;吳倩倩;李一波;;改進(jìn)時空特征的人體異常行為檢測方法研究[J];沈陽航空航天大學(xué)學(xué)報;2013年05期
7 桑海峰;郭昊;徐超;;基于運(yùn)動特征的人體異常行為識別[J];中國科技論文;2014年07期
8 王傳旭;董晨晨;;基于時空特征點(diǎn)的群體異常行為檢測算法[J];數(shù)據(jù)采集與處理;2012年04期
9 沈海燕;馮云梅;史宏;;基于信息融合的客運(yùn)站人體異常行為識別研究[J];公路交通科技;2009年S1期
10 陳穎鳴;陳樹越;張顯亭;;智能視頻監(jiān)控中異常行為識別研究[J];微電子學(xué)與計算機(jī);2010年11期
相關(guān)會議論文 前1條
1 王碧英;孫健敏;;公仆型領(lǐng)導(dǎo)對員工行為的影響[A];第十二屆全國心理學(xué)學(xué)術(shù)大會論文摘要集[C];2009年
相關(guān)博士學(xué)位論文 前5條
1 林娜;小鼠異常行為的遺傳基礎(chǔ)研究[D];東北農(nóng)業(yè)大學(xué);2006年
2 Popoola Oluwatoyin Pius;擁擠環(huán)境下的異常行為檢測研究[D];哈爾濱工程大學(xué);2012年
3 張軍;基于視頻的運(yùn)動人體異常行為分析識別研究[D];西安電子科技大學(xué);2009年
4 劉皓;基于條件隨機(jī)場模型的異常行為檢測方法研究[D];中國科學(xué)技術(shù)大學(xué);2014年
5 張毅;MANET環(huán)境中基于移動Agent的異常行為檢測與防御[D];哈爾濱工程大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 張雁冰;監(jiān)控視頻中人體異常行為檢測研究[D];深圳大學(xué);2015年
2 梁玉;基于ORB興趣點(diǎn)的異常行為檢測技術(shù)研究[D];鄭州大學(xué);2015年
3 陳崗;治安監(jiān)控中基于計算機(jī)視覺的異常行為檢測技術(shù)研究[D];上海交通大學(xué);2015年
4 許龍;視頻中的異常行為檢測與分析研究[D];上海交通大學(xué);2015年
5 姚源;視頻中異常行為發(fā)現(xiàn)方法研究及實現(xiàn)[D];電子科技大學(xué);2014年
6 王朝新;基于視頻的行人異常行為檢測技術(shù)的應(yīng)用研究[D];電子科技大學(xué);2014年
7 張海峰;陽煤集團(tuán)視頻異常監(jiān)控系統(tǒng)設(shè)計與實現(xiàn)[D];電子科技大學(xué);2014年
8 崔永艷;基于多示例學(xué)習(xí)的異常行為檢測方法研究[D];南京大學(xué);2011年
9 張彥杰;人體異常行為檢測技術(shù)的研究[D];天津大學(xué);2012年
10 李曉東;基于監(jiān)控視頻的異常行為檢測技術(shù)研究[D];廣東工業(yè)大學(xué);2012年
,本文編號:2204109
本文鏈接:http://sikaile.net/kejilunwen/wltx/2204109.html