天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

多重天線陣列結(jié)構(gòu)的GNSS接收機抗干擾方法研究

發(fā)布時間:2018-08-23 08:18
【摘要】:全球衛(wèi)星導(dǎo)航系統(tǒng)(Global Navigation Satellite System, GNSS)能夠為用戶提供全天候、高精度、連續(xù)性和實時性的定位、導(dǎo)航、授時服務(wù),在生產(chǎn)生活的各個領(lǐng)域被廣泛應(yīng)用并發(fā)揮了巨大作用,現(xiàn)已成為各國積極建設(shè)的國防及民用基礎(chǔ)設(shè)施,形成了GPS、Galileo、BeiDou-2、GLONASS四大系統(tǒng)并行發(fā)展的格局,并推動了GNSS現(xiàn)代化進(jìn)程。 GNSS系統(tǒng)存在諸多缺陷,在現(xiàn)代化進(jìn)程中不斷得到改善,因此誕生了新的導(dǎo)航信號及不同的調(diào)制方式,來提高系統(tǒng)的服務(wù)性能,但由于頻譜資源有限,越來越多的信號擁擠在L頻段,不同的導(dǎo)航信號之間形成系統(tǒng)內(nèi)和系統(tǒng)間干擾,并拓寬了接收機的接收帶寬,由單頻點的幾(十)MHz增加到多頻點的幾百MHz。更嚴(yán)重的是,受限于衛(wèi)星功率及高度,地面接收信號微弱,大功率的壓制式射頻干擾會使接收機無法工作,這是GNSS現(xiàn)代化無法解決的問題,而成本低廉的壓制式干擾是昂貴的GNSS系統(tǒng)面臨的最大威脅。 本文從GNSS信號特點及接收機工作原理出發(fā),以陣列信號處理理論為基礎(chǔ)研究不同應(yīng)用環(huán)境下采用不同陣列結(jié)構(gòu)的GNSS抗干擾接收技術(shù),針對以下問題展開研究并給出相應(yīng)的抗干擾算法: 第一:兼容性及干擾/抗干擾性能的量化度量問題。兼容性是GNSS接收機正常工作的基礎(chǔ),也是互操作的前提,本文首先給出傳統(tǒng)及現(xiàn)代化信號的調(diào)制方式及信號產(chǎn)生和捕獲原理,根據(jù)信號特征分析系統(tǒng)內(nèi)及系統(tǒng)間多個信號的影響,給出量化參數(shù);接著給出常見壓制式干擾的信號模型,并將兼容性評估方法延伸到壓制式干擾環(huán)境,給出干擾對信號影響的評估準(zhǔn)則與量化參數(shù),結(jié)合接收機捕獲性能驗證評估參數(shù)的有效性,作為后續(xù)抗干擾算法研究與性能評價的基礎(chǔ)。 第二:GNSS單頻點抗干擾接收機的實現(xiàn)應(yīng)用問題。對于單頻點信號,,以相干模型為基礎(chǔ),根據(jù)GNSS信號特點研究基于天線陣列的自適應(yīng)波束形成(Adaptive Digital Beamforming,ADBF)相關(guān)算法在GNSS接收機上的實現(xiàn)。首先針對GNSS信號微弱難以實現(xiàn)波達(dá)角(Direction of Arrival,DOA)估計的特點,研究無需DOA先驗信息的全盲自適應(yīng)波束形成技術(shù),降低系統(tǒng)復(fù)雜度的同時也避免由DOA估計誤差導(dǎo)致的性能降低;然后針對接收機載體的移動、抖動、翻轉(zhuǎn)特性,研究對干擾方向具有魯棒性的二維零陷展寬算法,當(dāng)干擾方向偏離零陷方向時依然能有效抑制;最后針對ADBF算法在硬件上實現(xiàn)需要矩陣求逆及大規(guī)模除法的問題,給出無需除法的數(shù)值解算方法,降低系統(tǒng)復(fù)雜度與硬件成本。針對上述算法通過軟件模擬器、軟件接收機、硬件開發(fā)平臺的半實物仿真進(jìn)行性能驗證。 第三:GNSS接收機天線陣元受限問題。自適應(yīng)天線陣列的性能主要由陣面尺寸與陣元個數(shù)決定,而GNSS接收機的移動性決定了天線陣列的尺寸受限,L波段進(jìn)一步限制了陣元個數(shù),因此與相控陣系統(tǒng)以降低計算量為目的不同的是,GNSS接收機需要以有限的陣元數(shù)達(dá)到更好的接收性能。對此提出密集重疊子陣結(jié)構(gòu),密集重疊子陣結(jié)構(gòu)不僅充分利用每個陣元的接收信號,通過二級處理獲得額外的增益,并從結(jié)構(gòu)上避免了子陣輸出的柵瓣問題,防止性能惡化。討論兩級不同的加權(quán)模式對陣列性能的影響,針對不同應(yīng)用環(huán)境來確定適當(dāng)?shù)募訖?quán)方式。仿真結(jié)果驗證了該陣列結(jié)構(gòu)相比常規(guī)陣元結(jié)構(gòu)在輸出性能與復(fù)雜度上具有雙重的優(yōu)越性,以此為基礎(chǔ)設(shè)計了基于空域波束切換——時域碼相位搜索——頻域多普勒搜索的低復(fù)雜度GNSS抗干擾接收機。 第四:GNSS寬帶信號與稀布陣列的非相干接收問題。針對多系統(tǒng)多頻點接收機,給出非相干陣列的寬帶信號模型,采用空時自適應(yīng)處理(Space-Time Adaptive Processing,STAP)結(jié)構(gòu),研究STAP信號模型及全盲抗干擾算法,并分析STAP結(jié)構(gòu)對期望信號的影響。接著對大尺度陣元間距的非相干稀布陣列研究波束形成方法,分析陣元間距對DOA及方向圖的影響,以STAP的時間抽頭加權(quán)補償信號傳播延遲,將非相干接收信號轉(zhuǎn)變?yōu)橄喔尚盘,再通過相位加權(quán)消除干擾信號。然后將固定的稀布陣列推廣到動態(tài)的多用戶多天線接收,研究基于Ad-hoc網(wǎng)絡(luò)的多節(jié)點協(xié)作波束形成方法,給出不依賴于陣列幾何形狀的DOA模糊消除方法,最后對多節(jié)點的接收信號利用時間補償與相位加權(quán)綜合后為手持用戶提供干擾抑制能力。
[Abstract]:Global Navigation Satellite System (GNSS) can provide all-weather, high-precision, continuous and real-time positioning, navigation, time service for users. It has been widely used and played a huge role in various fields of production and life. It has become a national defense and civil infrastructure actively constructed by various countries, forming a G. The parallel development pattern of PS, Galileo, BeiDou-2, GLONASS and the four systems have promoted the modernization of GNSS.
GNSS system has many shortcomings and has been improved continuously in the process of modernization. Therefore, new navigation signals and different modulation modes have been born to improve the service performance of the system. However, due to the limited spectrum resources, more and more signals are crowded in the L-band. Different navigation signals form intra-system and inter-system interference and broaden the system performance. The receiving bandwidth of the receiver increases from a few (10) MHz of a single frequency point to several hundred MHz of a multi-frequency point. What's more, limited by the satellite power and height, the ground received signal is weak, and the high-power compressed radio frequency interference will make the receiver unable to work. This is an unsolvable problem in the modernization of GNSS, and the low-cost compressed interference is expensive. The biggest threat to the GNSS system.
Based on the characteristics of GNSS signal and the working principle of the receiver, this paper studies the anti-jamming receiving technology of GNSS with different array structures in different application environments on the basis of array signal processing theory.
Firstly, the problem of quantization of compatibility and interference/anti-jamming performance is discussed. Compatibility is the basis of the normal operation of GNSS receiver and the premise of interoperability. Firstly, the modulation mode of traditional and modern signals and the principle of signal generation and acquisition are given. According to the signal characteristics, the influence of multiple signals in and between systems is analyzed. Secondly, the signal model of common suppressed jamming is given, and the compatibility evaluation method is extended to suppressed jamming environment. The evaluation criteria and quantization parameters of jamming effect on signal are given. The validity of evaluation parameters is verified by receiver acquisition performance, which is the basis of subsequent anti-jamming algorithm research and performance evaluation.
Second, the application of GNSS single-frequency anti-jamming receiver. For single-frequency signal, based on the coherence model, according to the characteristics of GNSS signal, the adaptive digital Beamforming (ADBF) correlation algorithm based on antenna array is studied in GNSS receiver. Firstly, it is difficult to realize the wave for weak GNSS signal. Direction of Arrival (DOA) estimation is characterized by blind adaptive beamforming without prior DOA information, which reduces the complexity of the system and avoids the performance degradation caused by DOA estimation error. Then, two-dimensional zero robust to jamming direction is studied for the characteristics of carrier movement, jitter and flip. Finally, aiming at the problem of matrix inversion and large-scale division in hardware implementation of ADBF algorithm, a numerical method without division is given to reduce the system complexity and hardware cost. The hardware in the loop simulation of the development platform is carried out to verify the performance.
Thirdly, the antenna element constraints of GNSS receivers. The performance of the adaptive antenna array is mainly determined by the array size and the number of elements. The mobility of the GNSS receivers determines the size of the antenna array. The L-band further limits the number of elements. Therefore, unlike the phased array system, the GNSS receives the antenna array for the purpose of reducing the computational complexity. A dense overlapping subarray structure is proposed, which not only makes full use of the received signals of each array element, but also obtains additional gain by secondary processing. The problem of gate lobes of subarray output is avoided and the performance deterioration is prevented. The simulation results show that the array structure has double advantages over the conventional array element structure in output performance and complexity. Based on this, a space-domain beam switching-time-domain code phase searching-multi-frequency domain is designed. Low complexity GNSS anti-jamming receiver.
Fourth: incoherent reception of GNSS wideband signals and sparse arrays. For multi-system multi-frequency point receivers, a broadband signal model of incoherent arrays is given, and a space-time adaptive processing (STAP) structure is used to study the STAP signal model and the full-blind anti-jamming algorithm, and the STAP structure is analyzed for the desired signal. Secondly, beamforming method is studied for incoherent sparse arrays with large-scale array spacing. The influence of array spacing on DOA and pattern is analyzed. The propagation delay is compensated with STAP time-tap weighting. The incoherent received signal is transformed into coherent signal, and the interference signal is eliminated by phase weighting. Column is extended to dynamic multi-user multi-antenna reception. A multi-node cooperative beamforming method based on AD-hoc network is studied. A DOA blur cancellation method independent of array geometry is presented. Finally, the received signals of multi-node are combined with time compensation and phase weighting to provide interference suppression capability for handheld users.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TN965.5

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 程立斌,李珊珊;透析伊拉克戰(zhàn)爭GPS干擾與反干擾[J];電光與控制;2004年01期

2 彭宇;王丹;;無線傳感器網(wǎng)絡(luò)定位技術(shù)綜述[J];電子測量與儀器學(xué)報;2011年05期

3 曾偉一;林訓(xùn)超;曾友州;賀銀平;;組合導(dǎo)航技術(shù)的發(fā)展趨勢[J];成都航空職業(yè)技術(shù)學(xué)院學(xué)報;2011年02期

4 張炳琪;劉峰;陳禾;龍騰;;北斗B1頻點公開服務(wù)信號調(diào)制方式研究[J];中國科學(xué):物理學(xué) 力學(xué) 天文學(xué);2011年05期

5 戴邵武;馬長里;廖劍;;“北斗一代”導(dǎo)航定位系統(tǒng)分析與研究[J];計算機與數(shù)字工程;2010年03期

6 徐永祥;;GPS及其干擾技術(shù)研究[J];科技廣場;2007年01期

7 姚一飛;王浩;趙東發(fā);;北斗衛(wèi)星導(dǎo)航定位系統(tǒng)綜述[J];科技致富向?qū)?2011年08期

8 梁高波;陳軍;孫吉;;GPS M碼信號特性及抗干擾性能分析[J];通信對抗;2010年04期

9 劉玉;;“北斗”二代與“伽利略”衛(wèi)星頻率之爭[J];數(shù)字通信世界;2011年02期

10 王立賓;賀宏;;GPS M碼、C/A碼和P碼性能比較研究[J];無線電工程;2008年04期

相關(guān)博士學(xué)位論文 前3條

1 柯構(gòu);NCS性能評估及BOC無模糊捕獲技術(shù)研究[D];華中科技大學(xué);2011年

2 何曉峰;北斗/微慣導(dǎo)組合導(dǎo)航方法研究[D];國防科學(xué)技術(shù)大學(xué);2009年

3 侯友國;GPS接收機干擾抑制技術(shù)研究[D];電子科技大學(xué);2010年



本文編號:2198467

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/wltx/2198467.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶f2929***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com