天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

無線Mesh網(wǎng)絡中面向網(wǎng)絡編碼的調度機制研究

發(fā)布時間:2018-08-23 07:52
【摘要】:無線Mesh網(wǎng)絡由一組具有動態(tài)組網(wǎng)能力且無需基礎設施支撐的可移動終端組成。與Ad hoc網(wǎng)絡相比,無線Mesh網(wǎng)絡由于具有大容量、高速率、低成本以及可擴展性好等優(yōu)點,近年來得到工業(yè)界和學術界的廣泛關注,并成為商業(yè)化“最后一英里”無線寬帶熱門接入技術。隨著物聯(lián)網(wǎng)的發(fā)展和無線頻譜資源需求的日益增加,無線Mesh網(wǎng)絡被廣泛應用于城域網(wǎng)無線接入、車載通信和智能終端等方面。隨著大數(shù)據(jù)網(wǎng)絡通信時代的到來,無線多媒體業(yè)務正取代傳統(tǒng)的語音和數(shù)據(jù)通信業(yè)務成為網(wǎng)絡業(yè)務的主流。如何滿足用戶日益增長的帶寬需求是研究者需要考慮的重要課題。盡管近年來相關學者提出多種提高無線Mesh網(wǎng)絡吞吐量的技術方案,但是現(xiàn)有研究方案對不同技術方案應用時相互作用(如網(wǎng)絡編碼和空分復用調度,功率控制和網(wǎng)絡編碼)的研究較少。此外,現(xiàn)有基于無線Mesh網(wǎng)絡調度的研究大都假設網(wǎng)絡信道狀態(tài)信息是可預先獲知的,然而,實際無線網(wǎng)絡信道環(huán)境實時變化,信道狀態(tài)較難預測。同時,隨著物聯(lián)網(wǎng)相關研究如火如荼地進行,移動終端將越來越多地反映人的社會屬性,這對新興社交網(wǎng)絡環(huán)境下的通信研究提出了挑戰(zhàn)。本文針對上述問題和挑戰(zhàn),分別從基于信道增益和網(wǎng)絡編碼的調度機制、馬爾科夫模型下基于網(wǎng)絡編碼的調度機制、多射頻多信道多速率網(wǎng)絡編碼感知的調度機制、而向社交網(wǎng)絡和網(wǎng)絡編碼的調度機制四方面對無線Mesh網(wǎng)絡中面向網(wǎng)絡編碼的調度機制進行研究。本文的主要工作和取得的創(chuàng)新成果如下:(1)由于無線信道環(huán)境實時變化,信道狀態(tài)較難預測,第2章提出基于無線信道增益和網(wǎng)絡編碼的機會調度方案和功率分配方案。本章首先基于模擬網(wǎng)絡編碼(Analog Network Coding, ANC)和時分廣播(Time Division BroadCasting, TDBC)的網(wǎng)絡模型提出一種采用滑動采樣窗口的中斷概率閉式解表達式,進而對無線信道增益進行估計。本章提出的信道增益估計策略能夠適應網(wǎng)絡動態(tài)變化,同時相比基于底層信息采集的方案,具有簡單易行且不受網(wǎng)絡拓撲局限等優(yōu)點。然后,本章提出一種基于無線信道增益的機會調度方案,目標是最大化網(wǎng)絡傳輸速率。最后,本章研究了ANC和TDBC方案中節(jié)點的能耗感知功率分配方案,目標是最小化網(wǎng)絡傳輸總功率。(2)第3章提出面向物理層網(wǎng)絡編碼(Physical-layer Network Coding, PNC)的調度機制,目標是高效地利用無線頻譜資源,進而提高網(wǎng)絡吞吐量。本章考慮了較雙向中繼信道傳輸更復雜的網(wǎng)絡傳輸形式,其中多個節(jié)點同時向中繼節(jié)點發(fā)送信息,并基于馬爾科夫鏈進行鏈路機會調度,其中馬氏鏈的狀態(tài)為中繼節(jié)點當前時刻能夠接收到源節(jié)點發(fā)送的數(shù)據(jù)包個數(shù)。接著本章推導了馬爾科夫過程各種狀態(tài)下的轉移概率,并對信道狀態(tài)在對稱和非對稱情況下所獲得的網(wǎng)絡吞吐量進行了研究。本章提出的機制在非對稱信道狀態(tài)較對稱信道狀態(tài)在能耗方面更加具有優(yōu)勢,由于大部分網(wǎng)絡的信道狀態(tài)是非對稱的,該機制具有廣闊的應用場景。(3)盡管傳輸技術融合可以大幅提高網(wǎng)絡性能,但是如何處理不同傳輸技術應用時相互作用方面的相關研究才剛剛起步。為了最大化網(wǎng)絡吞吐量,第4章提出多射頻多信道多速率網(wǎng)絡編碼感知的調度機制,該機制支持不同中繼傳輸方式。本章首先提出一種多速率網(wǎng)絡編碼感知的調度方案,該方案考慮了網(wǎng)絡編碼和空分復用的相互作用。由于該問題計算復雜度較高,本章基于列生成算法對該方案進行求解,并提出種啟發(fā)式算法對列生成的子問題進行簡化,目標是進一步降低計算復雜度。接著本章提出一種虛擬鏈路融合機制,將不采用網(wǎng)絡編碼但從同一源節(jié)點發(fā)送到多個口的節(jié)點的單播傳輸擴展為多播傳輸。最后,將單射頻單信道的網(wǎng)絡擴展到多射頻多信道網(wǎng)絡,由于信道分配問題計算復雜度較高,本章采用啟發(fā)式算法對該問題進行求解。(4)為了對物聯(lián)網(wǎng)傳輸中的網(wǎng)絡個體進行調度,第5章研究面向社交網(wǎng)絡和網(wǎng)絡編碼的調度機制。本章首先對網(wǎng)絡節(jié)點的社會屬性進行建模,接著提出一種基于經濟學雙邊拍賣模型的中繼節(jié)點選擇策略,該方案鼓勵將長距離單跳通信的鏈路分解為多跳中繼轉發(fā)的鏈路,降低網(wǎng)絡傳輸干擾的同時將創(chuàng)造出更多鏈路融合和中繼選擇機會,從而提高中繼節(jié)點采用新興傳輸方式的可能。隨后,本章建立基于社交網(wǎng)絡和網(wǎng)絡編碼的自適應調度傳輸機制,目標是最大化社會福利和網(wǎng)絡吞吐量。由于建立的最優(yōu)化模型計算復雜度較高,本章最后基于仿生學的螢火蟲算法對該問題通過迭代算法進行求解。為了驗證和評估上.述機制的性能,本文采用C++和Qualnet仿真軟件搭建了仿真平臺。仿真結果表明,與現(xiàn)有研究方案相比,本文所提出的方案和算法是有效的,具有更好的網(wǎng)絡性能。
[Abstract]:Wireless Mesh networks consist of a group of mobile terminals with dynamic networking capabilities and no infrastructure support. Compared with Ad hoc networks, wireless Mesh networks have attracted much attention from industry and academia in recent years and become the last mile of commercialization due to their advantages of large capacity, high speed, low cost and good scalability. "Wireless broadband hot access technology. With the development of the Internet of Things and the increasing demand for wireless spectrum resources, wireless Mesh network is widely used in metropolitan area network wireless access, vehicle communications and intelligent terminals. With the advent of the era of large data network communications, wireless multimedia services are replacing traditional voice and data communications. Traffic has become the mainstream of network services. How to meet the increasing bandwidth requirements of users is an important issue that researchers need to consider. In addition, the existing research based on wireless Mesh network scheduling mostly assumes that the network channel state information can be known beforehand. However, the real-time changes of wireless network channel environment make it difficult to predict the channel state. Terminals will increasingly reflect people's social attributes, which poses a challenge to communication research in emerging social networks. In view of these problems and challenges, this paper proposes a scheduling mechanism based on channel gain and network coding, a scheduling mechanism based on network coding in Markov model, and a multi-radio frequency multi-channel multi-rate network coding. The main work and innovations of this paper are as follows: (1) Because of the real-time changes of wireless channel environment, channel state is difficult to predict. In chapter 2, wireless channel is proposed based on wireless channel. Gain and Network Coding Opportunity Scheduling and Power Allocation Schemes. Firstly, based on Analog Network Coding (ANC) and Time Division Broadcasting (TDBC) network model, a closed-form expression of outage probability with sliding sampling window is proposed to estimate the gain of wireless channel. The channel gain estimation strategy proposed in this chapter can adapt to the dynamic changes of the network, and has the advantages of simplicity and not limited by the network topology compared with the scheme based on the underlying information collection. Then, this chapter proposes an opportunity scheduling scheme based on the wireless channel gain, aiming to maximize the network transmission rate. The energy-aware power allocation schemes of nodes in ANC and TDBC schemes are studied with the aim of minimizing the total network transmission power. (2) In Chapter 3, a physical-layer network coding (PNC) oriented scheduling mechanism is proposed. The objective is to efficiently utilize wireless spectrum resources and improve network throughput. Relay channel transmission is a more complex form of network transmission, in which multiple nodes send information to the relay node at the same time and schedule links based on Markov chain. The state of Markov chain is the number of packets that the relay node can receive from the source node at the current time. The mechanism proposed in this chapter has more advantages in energy consumption in asymmetric channel state than in symmetric channel state. Because the channel state of most networks is asymmetric, this mechanism has a wide range of applications. (3) Although transmission technology convergence can greatly improve network performance, the research on how to deal with the interaction between different transmission technologies is just beginning. In order to maximize network throughput, Chapter 4 proposes a multi-radio frequency multi-channel multi-rate network coding sensing scheduling mechanism, which supports different relay transmission modes. In this chapter, we first propose a multi-rate network coding-aware scheduling scheme, which considers the interaction between network coding and space division multiplexing. Because of the high computational complexity of this problem, we solve this scheme based on the column generation algorithm, and propose a heuristic algorithm to simplify the sub-problem of column generation. Secondly, a virtual link fusion mechanism is proposed, which extends unicast transmission from the same source node to nodes with multiple ports without network coding to multicast transmission. In this chapter, a heuristic algorithm is used to solve the problem. (4) In order to schedule the individuals in the Internet of Things, Chapter 5 studies the scheduling mechanism for social networks and network coding. The scheme encourages the decomposition of long-distance single-hop communication links into multi-hop relay forwarding links, and reduces network transmission interference while creating more chances for link fusion and relay selection, thus improving the possibility of relay nodes adopting new transmission modes. Subsequently, this chapter establishes adaptive networks and network coding. Scheduling transmission mechanism aims to maximize social welfare and network throughput. Because of the high computational complexity of the optimization model, this chapter finally solves the problem by iteration algorithm based on bionic firefly algorithm. In order to verify and evaluate the performance of the mechanism, this paper uses C++ and Qualnet simulation software to build the simulation. Simulation results show that the proposed scheme and algorithm are effective and have better network performance than existing research schemes.
【學位授予單位】:東北大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TN929.5

【相似文獻】

相關期刊論文 前10條

1 李繁;;網(wǎng)絡編碼技術原理及應用[J];成都紡織高等?茖W校學報;2012年01期

2 姜邱;;基于網(wǎng)絡編碼的無線網(wǎng)絡技術探討[J];黑龍江科技信息;2012年19期

3 楊蕊;;網(wǎng)絡編碼在無線網(wǎng)絡中的應用及發(fā)展趨勢[J];科技創(chuàng)業(yè)月刊;2013年05期

4 付琳;付志雄;;網(wǎng)絡編碼理論與研究方向[J];通信與信息技術;2007年01期

5 崔凱;王麗;;網(wǎng)絡編碼技術及其在通信網(wǎng)絡中的應用[J];黑龍江科技信息;2007年04期

6 付琳;付志雄;;網(wǎng)絡編碼研究[J];科技資訊;2007年07期

7 付琳;周亮;李少謙;;網(wǎng)絡編碼的研究進展[J];電信科學;2007年05期

8 陶少國;黃佳慶;楊宗凱;喬文博;熊志強;;網(wǎng)絡編碼研究綜述[J];小型微型計算機系統(tǒng);2008年04期

9 覃團發(fā);廖素蕓;羅會平;;無線Mesh網(wǎng)絡中網(wǎng)絡編碼的文件共享模型[J];電訊技術;2008年05期

10 王靜;趙林森;劉向陽;王新梅;;無線網(wǎng)絡中一類多播網(wǎng)絡的網(wǎng)絡編碼[J];計算機科學;2008年09期

相關會議論文 前10條

1 ;全國第十六屆信息論學術年會暨全國第二屆網(wǎng)絡編碼學術研討會征文通知[A];中國電子學會第十五屆信息論學術年會暨第一屆全國網(wǎng)絡編碼學術年會論文集(上冊)[C];2008年

2 ;全國第十六屆信息論學術年會暨全國第二屆網(wǎng)絡編碼學術研討會征文通知[A];中國電子學會第十五屆信息論學術年會暨第一屆全國網(wǎng)絡編碼學術年會論文集(下冊)[C];2008年

3 沈麗麗;侯春萍;楊家琛;;網(wǎng)絡編碼在無線網(wǎng)絡中的信息交換[A];無線傳感器網(wǎng)及網(wǎng)絡信息處理技術——2006年通信理論與信號處理年會論文集[C];2006年

4 黃佳慶;李揮;;網(wǎng)絡編碼理論研究進展[A];中國電子學會第十五屆信息論學術年會暨第一屆全國網(wǎng)絡編碼學術年會論文集(下冊)[C];2008年

5 李令雄;龍冬陽;;一個非多播網(wǎng)絡上網(wǎng)絡編碼可解性的證明[A];中國電子學會第十五屆信息論學術年會暨第一屆全國網(wǎng)絡編碼學術年會論文集(下冊)[C];2008年

6 李世唐;鄭寶玉;;基于機會式網(wǎng)絡編碼的兩用戶協(xié)作[A];2009年通信理論與信號處理學術年會論文集[C];2009年

7 付子義;宋昀;;網(wǎng)絡編碼技術研究[A];武漢(南方九省)電工理論學會第22屆學術年會、河南省電工技術學會年會論文集[C];2010年

8 鄧波;;基于網(wǎng)絡編碼的移動通信技術[A];《IT時代周刊》論文專版(第300期)[C];2014年

9 王偉;岳殿武;;協(xié)作中繼網(wǎng)中的復數(shù)域網(wǎng)絡編碼[A];2009年中國高校通信類院系學術研討會論文集[C];2009年

10 黃佳慶;王亮;張?zhí)柽h;程文青;;有環(huán)網(wǎng)絡中卷積網(wǎng)絡編碼的碼構造算法[A];2008通信理論與技術新發(fā)展——第十三屆全國青年通信學術會議論文集(下)[C];2008年

相關重要報紙文章 前2條

1 ;網(wǎng)絡編碼將引發(fā)下一代網(wǎng)絡革命[N];網(wǎng)絡世界;2007年

2 Patrick Nelson 編譯 劉貝貝;TCP/IP將死?[N];計算機世界;2014年

相關博士學位論文 前10條

1 周志恒;無線網(wǎng)絡中基于網(wǎng)絡編碼的數(shù)據(jù)恢復與重傳機制及其算法[D];電子科技大學;2014年

2 海龍;無線網(wǎng)絡中流間網(wǎng)絡編碼的研究[D];大連理工大學;2015年

3 梁天;協(xié)作中繼通信系統(tǒng)中的資源分配及物理層網(wǎng)絡編碼問題研究[D];東南大學;2016年

4 寧兆龍;無線Mesh網(wǎng)絡中面向網(wǎng)絡編碼的調度機制研究[D];東北大學;2014年

5 王俊義;編碼分組網(wǎng)絡的效用最大化及網(wǎng)絡編碼在應用方面的研究[D];北京郵電大學;2008年

6 宋譜;基于廣播優(yōu)勢的無線網(wǎng)絡編碼系統(tǒng)性能分析與應用研究[D];北京郵電大學;2009年

7 黃辰;基于網(wǎng)絡編碼的無線網(wǎng)絡通信機制研究[D];華中科技大學;2010年

8 王寧;網(wǎng)絡編碼在無線通信中的應用研究[D];北京郵電大學;2009年

9 郝琨;網(wǎng)絡編碼關鍵技術及其應用研究[D];天津大學;2010年

10 瑞米;雙源網(wǎng)絡編碼研究[D];華中科技大學;2009年

相關碩士學位論文 前10條

1 陳盼盼;物理層網(wǎng)絡編碼在多中繼協(xié)作通信系統(tǒng)中的性能研究[D];西南交通大學;2015年

2 楊璐;基于譯碼轉發(fā)中繼的物理層網(wǎng)絡編碼方案設計[D];西南交通大學;2015年

3 段曼曼;基于網(wǎng)絡編碼的無線網(wǎng)絡可靠傳輸技術研究[D];西南交通大學;2015年

4 張繪;無線網(wǎng)絡的網(wǎng)絡編碼節(jié)點優(yōu)化技術[D];西南交通大學;2015年

5 王應松;SINR下基于物理層網(wǎng)絡編碼的無線網(wǎng)絡容量研究[D];曲阜師范大學;2015年

6 朱暢;基于網(wǎng)絡編碼的無線傳感網(wǎng)數(shù)據(jù)傳輸技術研究[D];蘇州大學;2015年

7 徐千慧;高階調制下物理層網(wǎng)絡編碼中繼映射方案設計與性能分析[D];哈爾濱工業(yè)大學;2015年

8 邢杰;基于網(wǎng)絡編碼的無線體域網(wǎng)容錯性研究[D];廣西大學;2015年

9 吳端;基于網(wǎng)絡編碼及神經網(wǎng)絡的傳感器數(shù)據(jù)收集及融合[D];電子科技大學;2015年

10 唐思騰;網(wǎng)絡編碼協(xié)作中繼通信系統(tǒng)資源分配的研究[D];貴州大學;2015年

,

本文編號:2198371

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/wltx/2198371.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶bfd67***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com