AUV模型輔助捷聯(lián)慣導(dǎo)組合導(dǎo)航方法研究
發(fā)布時間:2018-08-20 14:44
【摘要】:捷聯(lián)慣性導(dǎo)航系統(tǒng)(SINS,Strapdown Inertial Navigation System)作為自主式水下潛器(AUV,Autonomous Underwater Vehicle)的主要導(dǎo)航方式,在沒有有效輔助的情況下,由于誤差積累引起的捷聯(lián)慣導(dǎo)系統(tǒng)發(fā)散問題,多采用多普勒測速儀(DVL,Doppler velocity Log)對其漂移進行限制。然而,探測方法較為粗糙,水下地形復(fù)雜等問題使得某些情況下DVL的探測范圍無法到達海底,降低了 SINS/DVL組合導(dǎo)航模式的可行性。在DVL失效,無法得到準確量測時,捷聯(lián)慣導(dǎo)系統(tǒng)誤差迅速增大,導(dǎo)航精度大大降低。同時,系統(tǒng)模型失真,噪聲統(tǒng)計特性不確定,將會導(dǎo)致卡爾曼濾波精度降低,嚴重時會出現(xiàn)濾波發(fā)散的情況。因此,需要一個能有效降低漂移的導(dǎo)航方式對SINS的速度信息和位置信息進行校正,并且需要魯棒性較好的濾波器對該組合導(dǎo)航系統(tǒng)進行狀態(tài)估計。針對以上問題,本文提出了采用描述AUV運動的數(shù)學(xué)模型輔助捷聯(lián)慣導(dǎo)的組合導(dǎo)航方法,并且選用漸消記憶卡爾曼濾波和H∞濾波對模型輔助的組合導(dǎo)航系統(tǒng)進行狀態(tài)估計。本文詳細介紹和深入研究了以下內(nèi)容:首先,本文分析了傳統(tǒng)的組合導(dǎo)航方式和模型輔助的組合導(dǎo)航方式之間的區(qū)別;介紹了捷聯(lián)慣導(dǎo)的原理、機械編排、進行了誤差分析,并給出了捷聯(lián)慣導(dǎo)的誤差方程。其次,本文根據(jù)AUV運動的模型及海流對運動模型的影響,建立在海流影響下的AUV運動的數(shù)學(xué)模型,利用其三自由度模型、合外力及力矩的數(shù)據(jù)解算得到AUV的位置信息和速度信息。然后,結(jié)合對漸消記憶濾波的深入研究提出了改進的漸消記憶卡爾曼濾波算法,并將其應(yīng)用到模型輔助組合導(dǎo)航系統(tǒng)中,在模型準確和不準確的情況下分別進行了勻速直線運動和變速運動的仿真,仿真結(jié)果表明漸消記憶濾波算法可以改善模型輔助捷聯(lián)慣性組合導(dǎo)航系統(tǒng)精度,且在模型不準確時抑制卡爾曼濾波發(fā)散。最后,采用了魯性更好的H∞濾波算法對模型輔助捷聯(lián)慣導(dǎo)組合導(dǎo)航系統(tǒng)進行狀態(tài)估計,在模型準確和不準確的情況下分別進行了勻速直線運動仿真和變速仿真,仿真結(jié)果表明H∞濾波算法不但可以改善模型輔助捷聯(lián)慣導(dǎo)組合導(dǎo)航系統(tǒng)精度還可以提高系統(tǒng)魯棒性,且在模型不準確時可以抑制卡爾曼濾波的發(fā)散。本文的研究結(jié)果表明改進的漸消記憶卡爾曼濾波在AUV模型輔助捷聯(lián)慣導(dǎo)組合導(dǎo)航系統(tǒng)中的應(yīng)用可以有效的抑制SINS發(fā)散,提高組合導(dǎo)航精度。H∞濾波在模型輔助組合導(dǎo)航系統(tǒng)中的應(yīng)用能夠有效提高組合導(dǎo)航系統(tǒng)精度和魯棒性。該組合導(dǎo)航系統(tǒng)可以作為DVL工作失效時的備份導(dǎo)航系統(tǒng),且這兩種濾波方式能夠有效抑制模型不準確的情況下卡爾曼濾波的發(fā)散問題。
[Abstract]:As the main navigation mode of autonomous Underwater Vehicle), sins Strapdown Inertial Navigation System) is a problem of divergence of sins caused by error accumulation in the absence of effective assistance. Doppler velocimeter (DVL) is often used to limit the drift. However, some problems such as rough detection method and complex underwater terrain make the detection range of DVL can not reach the bottom of the sea under some circumstances, which reduces the feasibility of SINS/DVL integrated navigation mode. When DVL fails and cannot be measured accurately, the strapdown inertial navigation system error increases rapidly and the navigation accuracy decreases greatly. At the same time, the distortion of the system model and the uncertainty of the statistical characteristics of noise will lead to the reduction of Kalman filtering accuracy and the occurrence of filtering divergence in serious cases. Therefore, a navigation method that can effectively reduce drift is needed to correct the velocity and position information of SINS, and a robust filter is needed to estimate the state of the integrated navigation system. In order to solve the above problems, this paper proposes a mathematical model to describe the motion of AUV in sins integrated navigation, and uses fading memory Kalman filter and H 鈭,
本文編號:2194010
[Abstract]:As the main navigation mode of autonomous Underwater Vehicle), sins Strapdown Inertial Navigation System) is a problem of divergence of sins caused by error accumulation in the absence of effective assistance. Doppler velocimeter (DVL) is often used to limit the drift. However, some problems such as rough detection method and complex underwater terrain make the detection range of DVL can not reach the bottom of the sea under some circumstances, which reduces the feasibility of SINS/DVL integrated navigation mode. When DVL fails and cannot be measured accurately, the strapdown inertial navigation system error increases rapidly and the navigation accuracy decreases greatly. At the same time, the distortion of the system model and the uncertainty of the statistical characteristics of noise will lead to the reduction of Kalman filtering accuracy and the occurrence of filtering divergence in serious cases. Therefore, a navigation method that can effectively reduce drift is needed to correct the velocity and position information of SINS, and a robust filter is needed to estimate the state of the integrated navigation system. In order to solve the above problems, this paper proposes a mathematical model to describe the motion of AUV in sins integrated navigation, and uses fading memory Kalman filter and H 鈭,
本文編號:2194010
本文鏈接:http://sikaile.net/kejilunwen/wltx/2194010.html
最近更新
教材專著