天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

聲源DOA估計中的TDOA-DOA映射方法研究

發(fā)布時間:2018-08-04 07:46
【摘要】:聲源波達方向(Direction Of Arrival,DOA)估計作為麥克風陣列信號處理中的一項關鍵技術,在視頻會議系統(tǒng)、故障檢測、醫(yī)療診斷、軍事等許多領域都有廣泛應用;诙嗤ǖ赖竭_時間差(Time Differences Of Arrival,TDOA)的方法是聲源DOA估計中的一種重要方法。然而當前研究工作主要集中在TDOA獲取,而對TDOA-DOA映射方法研究較少;谧钚《酥С窒蛄炕貧w機(Least Squares Support Vector Regression,LS-SVR)的TDOA-DOA映射方法有較好的聲源DOA估計效果,但其研究并不全面。本文針對基于LS-SVR的TDOA-DOA映射方法,從LS-SVR中的核函數(shù)選取、多核LS-SVR構造以及稀疏化分析等方面進行了深入研究。此外,本文提出一種基于稀疏表示理論的無需調(diào)節(jié)參數(shù)的TDOA-DOA映射方法。本文的主要工作有:1)由于不同核函數(shù)具有不同的映射性能,因而本文研究了徑向基核、多項式核以及線性核這三種常見核函數(shù)構造的LS-SVR在混響和噪聲環(huán)境中的聲源DOA估計性能,并與最小二乘映射方式進行了比較。研究結(jié)果表明,采用徑向基核函數(shù)具有更高的估計性能。2)針對估計時延在混響較為嚴重的環(huán)境中出現(xiàn)離群值的問題,本文根據(jù)TDOA-DOA的映射特點,提出一種基于中值濾波的TDOA處理方法以消除離群值。研究結(jié)果表明,采用該方法后,在混響較為嚴重的環(huán)境中聲源DOA映射性能得到了有效提升。3)為了進一步提升聲源DOA估計性能,本文結(jié)合多核學習理論以及K-means聚類算法,提出了基于聚類方法的多核LS-SVR映射方法。仿真結(jié)果表明,多核LS-SVR的性能要優(yōu)于單核LS-SVR以及最小二乘法;一般情況下,核的個數(shù)越多,多核LS-SVR的性能越好,并且混響時間越大,多核的性能優(yōu)勢體現(xiàn)得越明顯。4)針對LS-SVR映射方法中訓練集存在冗余這一問題,本文將基于最小支持權重的剪枝稀疏方法運用到聲源DOA估計中,分別對單核和多核LS-SVR映射方法進行了稀疏化分析。研究結(jié)果表明,與基本LS-SVR相比,稀疏LS-SVR方法不僅能保持良好的DOA估計性能,而且有效減小了測試時的運算量。5)提出了一種基于稀疏表示理論的無需調(diào)節(jié)參數(shù)的TDOA-DOA映射方法。在此基礎上,為進一步降低運算量,本文應用一種雙步網(wǎng)格搜索方法來匹配TDOA向量和數(shù)據(jù)字典。研究結(jié)果表明,與傳統(tǒng)的無需調(diào)節(jié)參數(shù)的映射方法相比,該算法存在一定的性能優(yōu)勢。
[Abstract]:As a key technology in microphone array signal processing, acoustic source DOA estimation (DOA) estimation is widely used in many fields such as video conferencing system, fault detection, medical diagnosis, military and so on. The method based on multi-channel time-of-arrival (Time Differences Of ArrivalTDOA) is an important method in sound source DOA estimation. However, the current research focuses on TDOA acquisition, but less on TDOA-DOA mapping methods. The TDOA-DOA mapping method based on least squares support vector regression machine (Least Squares Support Vector) has a good effect on sound source DOA estimation, but its research is not comprehensive. In this paper, the method of TDOA-DOA mapping based on LS-SVR is studied in detail from the aspects of kernel function selection, multi-core LS-SVR construction and sparse analysis in LS-SVR. In addition, this paper presents a TDOA-DOA mapping method based on sparse representation theory without adjusting parameters. The main work of this paper is: (1) because different kernel functions have different mapping performance, this paper studies the DOA estimation performance of LS-SVR in reverberation and noise environments with three common kernel functions, radial basis kernel, polynomial kernel and linear kernel. And compared with the least square mapping method. The results show that the radial basis function has higher estimation performance (.2). In order to solve the problem of outliers in the reverberation environment, the mapping characteristics of TDOA-DOA are discussed in this paper. A TDOA processing method based on median filter is proposed to eliminate outliers. The results show that the performance of sound source DOA mapping is improved by using this method in a more serious reverberation environment. In order to further improve the performance of sound source DOA estimation, this paper combines multi-core learning theory and K-means clustering algorithm. A multi-core LS-SVR mapping method based on clustering method is proposed. The simulation results show that the performance of multi-core LS-SVR is better than that of single core LS-SVR and least square method. In general, the more the number of cores, the better the performance and reverberation time of multi-core LS-SVR. The more obvious the performance advantage of multi-kernel is, the more obvious is the redundancy of training set in LS-SVR mapping method. In this paper, the pruning sparse method based on minimum support weight is applied to the sound source DOA estimation. The single core and multi-core LS-SVR mapping methods are analyzed respectively. The results show that compared with the basic LS-SVR, the sparse LS-SVR method can not only maintain good DOA estimation performance, but also reduce the computational complexity of the test effectively.) A new TDOA-DOA mapping method based on sparse representation theory without adjusting parameters is proposed. On this basis, a two-step grid search method is applied to match TDOA vectors and data dictionaries in order to further reduce the computational complexity. The results show that the proposed algorithm has some performance advantages compared with the traditional mapping method without adjusting parameters.
【學位授予單位】:南京航空航天大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TN911.23

【參考文獻】

相關期刊論文 前1條

1 譚穎;殷福亮;李細林;;改進的SRP-PHAT聲源定位方法[J];電子與信息學報;2006年07期

,

本文編號:2163138

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/wltx/2163138.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶e0daf***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
亚洲精品一区二区三区日韩| 欧美有码黄片免费在线视频| 日本午夜一本久久久综合| 91麻豆精品欧美视频| 亚洲欧美国产精品一区二区| 美女露小粉嫩91精品久久久 | 年轻女房东2中文字幕| 成人亚洲国产精品一区不卡 | 日本午夜精品视频在线观看| 国产精品免费精品一区二区| 日韩人妻有码一区二区| 欧美亚洲91在线视频| 中日韩免费一区二区三区| 中文字幕人妻一区二区免费 | 国产一区二区在线免费| 国产精品美女午夜视频| 中文字幕日韩一区二区不卡| 国产av天堂一区二区三区粉嫩| 好吊色欧美一区二区三区顽频| 欧美成人欧美一级乱黄| 果冻传媒在线观看免费高清| 午夜精品一区免费视频| 欧美国产日产综合精品| 国产中文字幕久久黄色片| 国产一级内片内射免费看 | 欧美在线观看视频三区| 午夜视频成人在线免费| 国产老熟女乱子人伦视频| 亚洲国产精品无遮挡羞羞| 丰满熟女少妇一区二区三区| 在线免费视频你懂的观看| 亚洲欧美精品伊人久久| 国产午夜免费在线视频| 久久热这里只有精品视频| 国产精品成人免费精品自在线观看| 国产av大片一区二区三区| 中文字幕日韩精品人一妻| 国产精品日本女优在线观看| 两性色午夜天堂免费视频| 沐浴偷拍一区二区视频| 国产精品久久三级精品|