單空間模連續(xù)變量相干光通信方案的實(shí)驗(yàn)研究
[Abstract]:Continuous variable quantum key distribution is a new quantum communication technology. Compared with discrete variable quantum key distribution, it has the advantages of low cost, no need of single photon source and easy operation. However, if the popular M-Z interferometer is used to construct the transmission optical path, it is difficult to synchronize the signal optical path and the local oscillator optical path, so it is necessary to use a more complex algorithm and voltage apparatus to compensate. Because of the hysteresis and creep of the piezoelectric apparatus and the postposition of the algorithm, the quantum key distribution speed of continuous variables will be slow and the process will be complicated. In this paper, the experiment scheme of single space mode continuous variable coherent optical communication is adopted, and the Stokes parameter is used as the operating quantity. The signal light and the local oscillator light are transmitted in the same beam, and the synchronization is strong, and the communication stability is improved. The main contents of this paper are as follows: firstly, the coherent optical communication system with single space mode continuous variable is constructed using Stokes parameters as operable variables, and various optical circuit structures are analyzed. The encoding and decoding principle of Su (2) structure of LiNbO3 crystal is introduced in detail. The voltage range of the driving power supply is determined by MATLAB simulation, which provides the basis for the design of the hardware drive and control circuit. The encoded data is transmitted to PCs by USB transmission system, and the decoded polarized light is transmitted to PCs by homodyne detection and electrical signal acquisition. Through secondary sampling, filtering, extraction and other operations, the communication signal post-processing and error analysis. Secondly, the ARM DSP hardware development system, arm, is designed as the main control part. The communication with DSP and the data transmission with the driving power supply are accomplished by using the SPI port on the chip. The Cortex M 3 kernel is used to complete the function of fast interrupt response and transaction coordination. By using the powerful computing power of DSP, the Tabu algorithm is executed to find the optimal solution of the voltage value, which can reduce the load of the hardware circuit and crystal and improve the distribution rate. According to the characteristics of the hardware circuit structure, the preemptive multitask real-time operating system is adopted. The clock beat in the operating system runs at a high precision rate by the SysTick timer inside the ARM, and the multi-task fast switching is realized. According to the message queue function in the system, the ring queue storage structure of coding and voltage is established in DSP and ARM, which solves the aperiodic storage obstacle caused by the uncertainty of algorithm time. Finally, according to the designed scheme, the hardware environment is built on the optical platform, and the random polarization states are measured under different light intensities. The transmission and receiving data are analyzed by LabVIEW software. Firstly, the noise is removed by filtering, then the problem of laser drift is solved by the designed "dynamic window". By analyzing the measurement data, we can see that the ARM DSP hardware development system designed can realize the random selection of measurement bases, good stability of measurement, easy operation, achieve the design goal, and can be used for quantum key distribution of continuous variables.
【學(xué)位授予單位】:福州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN929.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐東明;相干光通信的實(shí)用化研究[J];現(xiàn)代有線傳輸;1996年02期
2 幺周石,胡渝;星間相干光通信技術(shù)的發(fā)展歷程與趨勢(shì)[J];光通信技術(shù);2005年08期
3 王玲;馮瑩;;衛(wèi)星相干光通信的研究進(jìn)展及趨勢(shì)[J];激光與光電子學(xué)進(jìn)展;2007年06期
4 胡毅;楊家龍;;40/100G相干光通信模塊的技術(shù)分析[J];烽火科技;2011年06期
5 牛麗紅;孔麗萍;;淺談相干光通信[J];中小企業(yè)管理與科技(下旬刊);2012年07期
6 謝福珍;相干光通信的最新成果簡(jiǎn)介[J];光通信技術(shù);1986年02期
7 楊同友 ,李先源;相干光通信[J];電信科學(xué);1988年05期
8 段曉明;;外差相干光通信的現(xiàn)狀與發(fā)展方向[J];光纖與電纜及其應(yīng)用技術(shù);1990年01期
9 邊一;;相干光通信[J];光纖與電纜及其應(yīng)用技術(shù);1991年02期
10 姚建國(guó);;相干光通信系統(tǒng)中的偏振控制技術(shù)[J];光通信技術(shù);1992年01期
相關(guān)會(huì)議論文 前1條
1 李番;鄔雙陽(yáng);;相干光通信技術(shù)研究[A];黑龍江、江蘇、山東、河南、江西 五省光學(xué)(激光)聯(lián)合學(xué)術(shù)‘13年會(huì)論文(摘要)集[C];2013年
相關(guān)重要報(bào)紙文章 前2條
1 ;安捷倫相干光通信測(cè)試方案[N];通信產(chǎn)業(yè)報(bào);2010年
2 ;安捷倫科技相干光通信測(cè)試方案[N];通信產(chǎn)業(yè)報(bào);2012年
相關(guān)博士學(xué)位論文 前7條
1 張鵬;衛(wèi)星相干光通信接收靈敏度衰退的補(bǔ)償方法研究[D];電子科技大學(xué);2015年
2 李宇鵬;相干光通信系統(tǒng)中碼型調(diào)制與鎖相環(huán)技術(shù)的研究[D];北京郵電大學(xué);2015年
3 趙意意;空間相干光通信終端光學(xué)系統(tǒng)研究[D];中國(guó)科學(xué)院研究生院(西安光學(xué)精密機(jī)械研究所);2015年
4 王大偉;數(shù)字信號(hào)處理算法在相干光通信系統(tǒng)中的應(yīng)用研究[D];浙江大學(xué);2013年
5 陶金晶;高速相干光通信系統(tǒng)中關(guān)鍵技術(shù)的研究[D];北京郵電大學(xué);2014年
6 鐘康平;DP-16QAM相干光通信系統(tǒng)關(guān)鍵技術(shù)的研究[D];北京交通大學(xué);2014年
7 張方正;高速光通信中數(shù)字信號(hào)處理(DSP)與波形產(chǎn)生技術(shù)研究[D];北京郵電大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 馬軍;相干光通信系統(tǒng)的采樣時(shí)鐘恢復(fù)與自適應(yīng)信道均衡算法研究[D];浙江大學(xué);2015年
2 于振明;斯托克斯域解偏振復(fù)用技術(shù)在相干光通信系統(tǒng)中應(yīng)用[D];電子科技大學(xué);2014年
3 魏江杰;零差相干光通信關(guān)鍵技術(shù)研究[D];電子科技大學(xué);2015年
4 岳浩;基于90°光混頻器的零差相干光通信技術(shù)研究[D];電子科技大學(xué);2014年
5 馬美娜;大氣效應(yīng)對(duì)相干光通信系統(tǒng)性能影響研究[D];西安電子科技大學(xué);2014年
6 陳莫;空間相干光通信的相位匹配研究[D];中國(guó)科學(xué)院研究生院(光電技術(shù)研究所);2016年
7 萬(wàn)君;單空間模連續(xù)變量相干光通信方案的實(shí)驗(yàn)研究[D];福州大學(xué);2014年
8 王修閣;相干光通信若干關(guān)鍵技術(shù)的研究[D];華中科技大學(xué);2008年
9 湯福明;相干光通信系統(tǒng)中的鎖相技術(shù)研究[D];北京郵電大學(xué);2009年
10 杜曉;相干光通信系統(tǒng)中相位同步及校正技術(shù)研究[D];北京郵電大學(xué);2010年
,本文編號(hào):2143897
本文鏈接:http://sikaile.net/kejilunwen/wltx/2143897.html