新的四元序列族及其在壓縮傳感中的應(yīng)用
[Abstract]:Pseudorandom sequences are widely used in radar, sonar, communication systems, cryptographic systems and other fields because of their good autocorrelation, cross-correlation, long period, large linear complexity, balance, easy to implement and so on. Binary sequences and quaternions are the preferred sequences for practical applications from the point of view of easy hardware implementation. Binary sequences were studied earlier, in which m sequence and Gold sequence. M sequence is widely used in communication field. Gold sequence is a pseudorandom sequence proposed by R.Gold on the basis of m sequence in 1967. The study of quaternion sequences based on Galois ring is relatively late, but it is found that for a given sequence family size M and sequence family period L, according to Welch and Sidelnikov bounds, It is possible to design a quaternion sequence family with a maximum cross-correlation value smaller than that of the optimal binary sequence family. The maximum cross-correlation function value of the quaternion sequence is 1 / 2 of the optimal binary sequence. At present, there are not many quaternion sequences with good properties, so it is important to construct quaternion pseudorandom sequences with good properties. In order to recover the analog signal without distortion, Nyquist sampling theorem requires that the sampling frequency should not be less than 2 times of the highest frequency in the analog signal spectrum, which greatly limits the processing ability of the information. The emergence of compression sensing theory breaks this traditional theorem and makes the acquisition of high resolution signals possible. It shows remarkable advantages in many fields. The design of measurement matrix is a hot issue in the theory of compression sensing. It relates to whether the signal can be compressed and whether the signal can be reconstructed accurately. The most widely used measurement matrices are random projection matrices or matrices with independent distribution such as Gao Si random matrices and Bernoulli matrices. Because these two matrices are irrelevant to all the other sparse transform bases, it allows us to perceive signals from the original domain without prior knowledge without damage, except that, We can realize the accurate reconstruction of the original signal under the requirement of certain measurement value. But the key to the application of compression sensing theory is to construct the measurement matrix which is easy to be realized by hardware in practical application. In this paper, we construct quaternion sequences with good properties and construct quaternion sequences with good properties. Tang has proposed a method to extend the period of sequence families with odd periods by 2 times, but this method is not suitable for families of sequences with even periodic numbers. The new method is to extend the period of even sequence families by 2 times. The new method is applied to sequence family B and sequence family U1 to obtain two new classes of quaternion sequences with a period of 4 (2n-1) (n as an integer). The analysis shows that the new sequence family has good low correlation and large linear complexity. The measurement matrix which is easy to be realized by hardware is constructed. The new sequence family has good balance and low correlation. In this paper, the theoretical analysis shows that the matrix constructed by the new sequence family is incoherent with some sparse transformation bases, and it can be used to compress the measurement matrix in the sensor. Secondly, the new matrix is proved to be used in the measurement matrix by MATLAB simulation. The signal can be reconstructed perfectly and the comparison between the new measurement matrix and the Gao Si random matrix is given.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TN918.4
【共引文獻】
相關(guān)期刊論文 前10條
1 楊笑;武傳坤;;濾波生成器的旋轉(zhuǎn)對稱攻擊[J];電子學(xué)報;2011年03期
2 趙靜;周衛(wèi);劉振海;;近世代數(shù)課程教學(xué)的幾點建議[J];廣西民族大學(xué)學(xué)報(自然科學(xué)版);2010年03期
3 張曉寒;;利用對偶空間構(gòu)造最大2-spread[J];蘭州理工大學(xué)學(xué)報;2013年04期
4 宋灝龍;梁華國;單國華;;公鑰密碼系統(tǒng)中的硬件二元域求逆模塊[J];計算機工程;2009年22期
5 吳盼望;張善從;;基于移位寄存器的偽隨機序列改進算法[J];計算機工程;2012年18期
6 張曉寒;;利用對偶空間構(gòu)造最優(yōu)等維碼[J];衡水學(xué)院學(xué)報;2014年01期
7 曹輝;高勝;;有限域上多項式形式的數(shù)字簽名方案及安全性研究[J];青海師范大學(xué)學(xué)報(自然科學(xué)版);2007年03期
8 馬明義;;有限域上的數(shù)字簽名方案[J];青海師范大學(xué)學(xué)報(自然科學(xué)版);2012年02期
9 曾敏;駱源;;F_2上第三類向量深度的分布及序列{(E-1)~m(s)}_(m≥0)的周期[J];通信學(xué)報;2008年04期
10 蘇磊;孫同森;郭曉沛;徐克艦;;有限域上多項式的行列式的一種求法[J];青島大學(xué)學(xué)報(自然科學(xué)版);2014年02期
相關(guān)博士學(xué)位論文 前5條
1 林勝;存儲系統(tǒng)容錯及陣列編碼[D];南開大學(xué);2010年
2 袁峰;多變量公鑰密碼的設(shè)計與分析[D];西安電子科技大學(xué);2010年
3 王志偉;適用于低端計算設(shè)備的數(shù)字簽名方案研究[D];北京郵電大學(xué);2009年
4 竇本年;多用戶環(huán)境下數(shù)字簽名新構(gòu)造與安全性的研究[D];南京理工大學(xué);2013年
5 趙璐;周期序列的2-adic復(fù)雜度及線性復(fù)雜度研究[D];北京郵電大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 姜富強;CBTC系統(tǒng)數(shù)據(jù)存儲單元的設(shè)計與實現(xiàn)[D];浙江大學(xué);2011年
2 張安源;高級數(shù)據(jù)加密標(biāo)準(zhǔn)中幾個數(shù)學(xué)問題的研究[D];西安電子科技大學(xué);2011年
3 李鵬程;無證書數(shù)字簽密方案的研究[D];西華大學(xué);2011年
4 白巖;高速網(wǎng)絡(luò)認證算法研究及實現(xiàn)[D];北京郵電大學(xué);2011年
5 王慧;F_5上一類BCH碼[D];鄭州大學(xué);2011年
6 崔雪晴;GF(3)上幾類廣義自縮序列[D];鄭州大學(xué);2011年
7 張學(xué)穎;對稱密碼有限域運算模塊可重構(gòu)設(shè)計技術(shù)研究[D];解放軍信息工程大學(xué);2010年
8 陳超;確定網(wǎng)絡(luò)編碼的安全特性研究[D];南京理工大學(xué);2012年
9 張瑩瑩;基于糾錯碼的公鑰密碼算法分析與設(shè)計[D];南京理工大學(xué);2012年
10 孫麗娜;基于遍歷矩陣的密碼學(xué)困難問題研究[D];吉林大學(xué);2008年
,本文編號:2143829
本文鏈接:http://sikaile.net/kejilunwen/wltx/2143829.html