基于深度支持向量機的極化SAR圖像分類
[Abstract]:Polarimetric synthetic Aperture Radar (Polarimetric Synthetic Aperture) has become a new hotspot in the field of remote sensing due to its ability to provide more abundant target scattering information. As an important research content and key technology of polarimetric SAR image interpretation, the classification of ground objects has great theoretical significance and application value in civil and military fields. Support Vector Machine (SVM) is an effective supervised classification method in statistics, which has been widely used in many fields. In this paper, SVM algorithm is used to study the classification of polarimetric SAR ground objects. The main research results are as follows: 1. In this paper, the least squares support vector machine (LSSVM) algorithm in support vector machine (SVM) algorithm is studied. Considering the disadvantages of the traditional algorithm when using LSSVM model to solve the classification problem, the computational complexity is high, and the solution is not sparse. The model is greatly affected by the sample noise. In this paper, the fuzzy sparse LSSVM algorithm is proposed by combining the fuzzy support vector machine (FSVM) with the sparse solution algorithm of LSSVM, considering the importance of fuzzy membership to fuzzy LSSVM. In this paper, we adopt two methods to measure fuzzy membership based on the distance between the sample and the center of the class, that is, the Euclidean distance based metric method and the kernel distance based measurement method. The proposed algorithm is used to classify the polarimetric SAR data. The proposed algorithm has better performance from the classification results and comparative experiments. The kernel function of LSSVM is studied. When solving nonlinear classification problem, the most important task is to select the kernel function that meets the conditions, and map the sample to the high-dimensional space, thus realizing the linear separability of the high-dimensional space, so the selection of kernel function is the key. The commonly used kernel function is radial basis kernel function, but the result is not very satisfactory when fitting the more complex function. In this paper, the condition of kernel function of support vector machine is analyzed. Then, the kernel function of the sparse LSSVM classifier is changed to the Morlet wavelet kernel function which accords with the kernel function condition, and a wavelet kernel sparse LSSVM algorithm is proposed. The contrast experiment of polarized SAR data classification shows that the sparse LSSVM model based on Morlet wavelet kernel has higher classification accuracy for polarimetric SAR data. The proposed wavelet kernel sparse LSSVM algorithm is extended. Combining the algorithm with the network architecture of deep SVM, a sparse LSSVM model with deep wavelet kernel is proposed. Two hidden layer units are designed in the model, and the activation values corresponding to the support vectors in the lower layer are used as the training samples at the higher level. Based on this, the sparse LSSVM classifier with depth wavelet kernel is trained. Considering the time complexity of the algorithm, the Lasso algorithm is used to solve the second layer, and then the depth Lasso model is constructed. The deep Lasso algorithm and the deep wavelet kernel sparse LSSVM algorithm are validated by UCI data and polarized SAR data, respectively.
【學位授予單位】:西安電子科技大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TN957.52
【相似文獻】
相關(guān)期刊論文 前10條
1 吳娟;范玉妹;王麗;;關(guān)于改進的支持向量機的研究[J];攀枝花學院學報;2006年05期
2 劉碩明;劉佳;楊海濱;;一種新的多類支持向量機算法[J];計算機應(yīng)用;2008年S2期
3 尹傳環(huán);牟少敏;田盛豐;黃厚寬;;單類支持向量機的研究進展[J];計算機工程與應(yīng)用;2012年12期
4 王云英;閻滿富;;C-支持向量機及其改進[J];唐山師范學院學報;2012年05期
5 李逢煥;;試述不確定支持向量機應(yīng)用分析及改進思路[J];中國證券期貨;2012年12期
6 邵惠鶴;支持向量機理論及其應(yīng)用[J];自動化博覽;2003年S1期
7 曾嶸,蔣新華,劉建成;基于支持向量機的異常值檢測的兩種方法[J];信息技術(shù);2004年05期
8 張凡,賀蘇寧;模糊判決支持向量機在自動語種辨識中的研究[J];計算機工程與應(yīng)用;2004年21期
9 魏玲,張文修;基于支持向量機集成的分類[J];計算機工程;2004年13期
10 沈翠華,鄧乃揚,肖瑞彥;基于支持向量機的個人信用評估[J];計算機工程與應(yīng)用;2004年23期
相關(guān)會議論文 前10條
1 余樂安;姚瀟;;基于中心化支持向量機的信用風險評估模型[A];第六屆(2011)中國管理學年會——商務(wù)智能分會場論文集[C];2011年
2 劉希玉;徐志敏;段會川;;基于支持向量機的創(chuàng)新分類器[A];山東省計算機學會2005年信息技術(shù)與信息化研討會論文集(一)[C];2005年
3 史曉濤;劉建麗;駱玉榮;;一種抗噪音的支持向量機學習方法[A];全國第19屆計算機技術(shù)與應(yīng)用(CACIS)學術(shù)會議論文集(下冊)[C];2008年
4 何琴淑;劉信恩;肖世富;;基于支持向量機的系統(tǒng)辨識方法研究及應(yīng)用[A];中國力學大會——2013論文摘要集[C];2013年
5 劉駿;;基于支持向量機方法的衢州降雪模型[A];第五屆長三角氣象科技論壇論文集[C];2008年
6 王婷;胡秀珍;;基于組合向量的支持向量機方法預測膜蛋白類型[A];第十一次中國生物物理學術(shù)大會暨第九屆全國會員代表大會摘要集[C];2009年
7 趙晶;高雋;張旭東;謝昭;;支持向量機綜述[A];全國第十五屆計算機科學與技術(shù)應(yīng)用學術(shù)會議論文集[C];2003年
8 周星宇;王思元;;智能數(shù)學與支持向量機[A];2005年中國智能自動化會議論文集[C];2005年
9 顏根廷;馬廣富;朱良寬;宋斌;;一種魯棒支持向量機算法[A];2006中國控制與決策學術(shù)年會論文集[C];2006年
10 侯澍e,
本文編號:2140751
本文鏈接:http://sikaile.net/kejilunwen/wltx/2140751.html