機(jī)載LiDAR點(diǎn)云數(shù)據(jù)濾波及建筑物提取技術(shù)研究
本文選題:機(jī)載激光雷達(dá)(LiDAR) + 點(diǎn)云 ; 參考:《長安大學(xué)》2014年碩士論文
【摘要】:隨著衛(wèi)星導(dǎo)航定位、攝影測量和遙感技術(shù)的飛速發(fā)展,地理空間信息科學(xué)應(yīng)用領(lǐng)域?qū)Λ@取準(zhǔn)確實(shí)時(shí)可靠的數(shù)據(jù)要求越來越高。日益興起的機(jī)載激光雷達(dá)(Light Detectionand Ranging,LiDAR)技術(shù)突破了攝影測量的基本框架,是激光測距、GPS空間跟蹤定位、INS姿態(tài)確定以及計(jì)算機(jī)等相融合的一種新興空間對地觀測技術(shù),不受日照和天氣等條件的限制,具有全天候、快速、精確等特點(diǎn),為獲取高時(shí)空分辨率的地球空間信息提供了極大的便利。機(jī)載LiDAR系統(tǒng)有其獨(dú)到的技術(shù)優(yōu)勢,使傳統(tǒng)單點(diǎn)定位數(shù)據(jù)獲取變成連續(xù)自動(dòng)數(shù)據(jù)獲取,提高了觀測的精度,能夠直接獲取高精度的飛行區(qū)域內(nèi)地表的三維坐標(biāo),可以精確地描述地形的起伏、道路的邊緣、植被的樹冠和建筑物的復(fù)雜構(gòu)造,在數(shù)字地球、智慧地球和數(shù)字城市建設(shè)等領(lǐng)域有廣泛的應(yīng)用前景。 機(jī)載LiDAR數(shù)據(jù)處理中最為關(guān)鍵的步驟是點(diǎn)云數(shù)據(jù)的濾波和建筑物提取,原始點(diǎn)云數(shù)據(jù)是一堆雜亂無章的點(diǎn),需要對點(diǎn)云進(jìn)行相應(yīng)處理,從離散的點(diǎn)云中準(zhǔn)確地提取地面與地物信息,為實(shí)現(xiàn)道路管理、城市規(guī)劃等提供更有效的信息,因此目前點(diǎn)云數(shù)據(jù)濾波處理及建筑物提取技術(shù)的理論與方法研究已成為國內(nèi)外眾多學(xué)者關(guān)注的課題。本文以LiDAR點(diǎn)云數(shù)據(jù)為基礎(chǔ),在無其他輔助數(shù)據(jù)的情況下,重點(diǎn)探討了LiDAR點(diǎn)云數(shù)據(jù)不同格式間的轉(zhuǎn)化、點(diǎn)云數(shù)據(jù)的三維顯示,通過設(shè)置不同的插值內(nèi)插生成DSM深度影像和DSM距離影像,對深度影像數(shù)據(jù)進(jìn)行濾波處理,再實(shí)現(xiàn)DSM距離影像及濾波后深度影像的建筑物自動(dòng)化提取,同時(shí)通過實(shí)驗(yàn)進(jìn)行具體的驗(yàn)證與比較,從而得出結(jié)論。 本文的主要工作和研究重點(diǎn)如下: 1.回顧了機(jī)載LiDAR系統(tǒng)與數(shù)據(jù)處理技術(shù)的發(fā)展研究現(xiàn)狀,,介紹了機(jī)載LiDAR系統(tǒng)的組成和工作原理,并同傳統(tǒng)的航空攝影測量以及InSAR技術(shù)工作原理進(jìn)行比較,同時(shí)對LiDAR點(diǎn)云數(shù)據(jù)的數(shù)據(jù)特點(diǎn)、誤差及處理流程進(jìn)行詳細(xì)的分析。本文還對于現(xiàn)存的幾種經(jīng)典數(shù)據(jù)濾波算法進(jìn)行原理分析以及對比歸納,簡述了自適應(yīng)濾波器,并進(jìn)行總結(jié)。 2.以ENVI和ArcGIS為主要的操作平臺,在ENVI加載用于處理LiDAR數(shù)據(jù)的插件,實(shí)現(xiàn)點(diǎn)云數(shù)據(jù)不同格式之間的轉(zhuǎn)換,并通過三種不同的表達(dá)形式實(shí)現(xiàn)LiDAR點(diǎn)云數(shù)據(jù)的三維化顯示。在ArcGIS中導(dǎo)入轉(zhuǎn)換后的點(diǎn)云數(shù)據(jù),以反射強(qiáng)度為插值內(nèi)插生成DSM深度影像,以高程為插值內(nèi)插生成DSM距離影像,實(shí)現(xiàn)對DSM深度影像的濾波處理,用四種不同的自適應(yīng)濾波進(jìn)行實(shí)驗(yàn),對結(jié)果進(jìn)行比較和分析。 3.設(shè)計(jì)一套自動(dòng)化提取的處理流程,在matlab的平臺支撐下,對濾波后的DSM深度影像數(shù)據(jù)進(jìn)行二值化操作,并進(jìn)行先腐蝕后膨脹的形態(tài)學(xué)開運(yùn)算,實(shí)現(xiàn)部分建筑物的自動(dòng)化提取,同時(shí)對以高程為插值生成的DSM距離影像直接進(jìn)行二值化及先腐蝕后膨脹的形態(tài)學(xué)開運(yùn)算,實(shí)現(xiàn)基于DSM距離影像的建筑物提取。最后對兩種不同的實(shí)驗(yàn)結(jié)果和原始點(diǎn)云數(shù)據(jù)的俯視圖進(jìn)行對比分析,討論存在的不足并得出結(jié)論。
[Abstract]:With the rapid development of satellite navigation, photogrammetry and remote sensing technology, the application of geospatial information science is becoming more and more demanding for obtaining accurate and reliable data. The rising airborne laser radar (Light Detectionand Ranging, LiDAR) technology has broken through the basic frame of the perturbation measurement, which is the laser range finding, the GPS space heel Tracking location, INS attitude determination and computer and other integration of a new space to earth observation technology, not limited by sunshine and weather conditions, all weather, fast, accurate and so on, provide great convenience for obtaining high spatial and temporal spatial information of the earth space. The airborne LiDAR system has its unique technical advantages, making the tradition Single point location data acquisition becomes continuous automatic data acquisition, improves the accuracy of observation, and can directly obtain high precision three-dimensional coordinates of the surface of the flight area. It can accurately describe the undulating terrain, the edge of the road, the crown of the vegetation and the complex structure of the building, which is led by the digital earth, the intelligent earth and the digital city construction. The domain has a wide range of applications.
The most important step in the airborne LiDAR data processing is the filtering of the point cloud data and the building extraction. The original point cloud data is a heap of disordered points. It is necessary to deal with the point cloud and extract the ground and ground information from the discrete point cloud, so as to provide more effective information for the realization of road management and urban planning. The theory and method of filtering processing of pre cloud data and the theory and method of building extraction technology have become a subject of attention of many scholars at home and abroad. This paper, based on LiDAR point cloud data, focuses on the transformation of different formats of LiDAR point cloud data in the absence of other auxiliary data, and the three dimensional display of point cloud data, by setting different data. Interpolation is interpolated to generate DSM depth image and DSM distance image, filter the depth image data, and then realize the automatic extraction of the building of the DSM distance image and the filtered depth image. At the same time, the concrete verification and comparison are carried out through the experiment, thus the conclusion is obtained.
The main work and research focus of this paper are as follows:
1. review the development and research status of airborne LiDAR system and data processing technology, introduce the composition and working principle of the airborne LiDAR system, compare with the traditional aerial photogrammetry and the principle of InSAR technology, and analyze the data characteristics, error and processing flow of the LiDAR point cloud data in detail. Several classical data filtering algorithms are analyzed and compared. The adaptive filters are summarized and summarized.
2. take ENVI and ArcGIS as the main operating platform, load the plug-in for processing LiDAR data in ENVI, realize the transformation between different format of point cloud data, and realize the three dimensional display of LiDAR point cloud data through three different expressions. The converted point cloud data is introduced in ArcGIS, and the reflection intensity is interpolated to create DSM depth with the reflection intensity. In degree image, DSM distance image is generated by interpolation interpolation, and the filtering processing of DSM depth image is realized. Experiments are carried out with four different adaptive filters, and the results are compared and analyzed.
3. a set of automated extraction process is designed. Under the support of the platform of MATLAB, the filtered DSM depth image data is operated on two values, and the morphological opening operation is carried out after corrosion and expansion. The automatic extraction of some buildings is realized. At the same time, the two values of the DSM distance image generated by the elevation are first valued and first. The morphological opening operation of the expansion after corrosion is carried out to realize the building extraction based on DSM distance image. Finally, the two different experimental results and the original point cloud data are compared and analyzed, and the shortcomings are discussed and the conclusions are drawn.
【學(xué)位授予單位】:長安大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TP391.41;TN958.98
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張小紅,劉經(jīng)南;機(jī)載激光掃描測高數(shù)據(jù)濾波[J];測繪科學(xué);2004年06期
2 黃金浪;;基于TerraScan的LiDAR數(shù)據(jù)處理[J];測繪通報(bào);2007年10期
3 馮甜甜;龔健雅;;基于LiDAR數(shù)據(jù)的建筑物自動(dòng)提取方法的比較[J];測繪通報(bào);2011年02期
4 張子林;門林杰;;基于Tin改進(jìn)的LiDAR濾波算法[J];工程地球物理學(xué)報(bào);2012年03期
5 尤紅建;張世強(qiáng);;組合CCD圖像和稀疏激光測距數(shù)據(jù)的建筑物三維信息提取[J];光學(xué)精密工程;2006年02期
6 李遷;肖春蕾;陳潔;楊達(dá)昌;;基于機(jī)載LiDAR點(diǎn)云和建筑物輪廓線構(gòu)建DSM的方法[J];國土資源遙感;2013年02期
7 李曉紅;;一種LiDAR點(diǎn)云生成格網(wǎng)DEM的快速算法[J];測繪通報(bào);2012年12期
8 朱萍萍;楊艷飛;許捍衛(wèi);;基于LIDAR數(shù)據(jù)的建筑物提取和三維重建的研究進(jìn)展[J];現(xiàn)代測繪;2007年04期
9 都偉冰;王雙亭;王春來;;基于機(jī)載LiDAR粗糙度指數(shù)和回波強(qiáng)度的道路提取[J];測繪科學(xué)技術(shù)學(xué)報(bào);2013年01期
10 武繼廣;;基于機(jī)載激光雷達(dá)和遙感影像融合的地物探測方法研究[J];首都師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年04期
相關(guān)博士學(xué)位論文 前2條
1 周曉明;機(jī)載激光雷達(dá)點(diǎn)云數(shù)據(jù)濾波算法的研究與應(yīng)用[D];解放軍信息工程大學(xué);2011年
2 王刃;機(jī)載LIDAR數(shù)據(jù)濾波與建筑物提取技術(shù)研究[D];解放軍信息工程大學(xué);2008年
本文編號:2114064
本文鏈接:http://sikaile.net/kejilunwen/wltx/2114064.html