WSN-MEs數(shù)據(jù)收集關(guān)鍵問(wèn)題研究
本文選題:無(wú)線傳感器網(wǎng)絡(luò) + 移動(dòng)數(shù)據(jù)收集器 ; 參考:《蘇州大學(xué)》2014年博士論文
【摘要】:無(wú)線傳感器網(wǎng)絡(luò)(WSNs)已經(jīng)成為覆蓋大范圍應(yīng)用的一項(xiàng)吸引人的技術(shù)。多數(shù)傳統(tǒng)的WSN體系結(jié)構(gòu)由稠密部署于傳感區(qū)域的靜態(tài)節(jié)點(diǎn)組成,節(jié)點(diǎn)通過(guò)單跳或多跳通信將采集到的數(shù)據(jù)傳輸給基站。近年來(lái),通過(guò)在傳統(tǒng)的WSNs中引入移動(dòng)元素MEs(mobile elements)來(lái)提高網(wǎng)絡(luò)的效率成為人們研究的熱點(diǎn)。相比傳統(tǒng)靜態(tài)WSNs,帶有移動(dòng)元素的無(wú)線傳感器網(wǎng)絡(luò)(WSN-MEs)顯著提高了網(wǎng)絡(luò)的能量效率,有效降低了組網(wǎng)成本。然而移動(dòng)性管理帶來(lái)了靜態(tài)WSNs所沒(méi)有的諸多挑戰(zhàn)。對(duì)WSN-MEs數(shù)據(jù)收集應(yīng)用,依據(jù)不同的場(chǎng)景可以采用不同的模式:對(duì)實(shí)時(shí)性要求高的事件監(jiān)測(cè)類(lèi)應(yīng)用,如何捕獲移動(dòng)元素軌跡構(gòu)建多跳動(dòng)態(tài)路由是一個(gè)挑戰(zhàn);對(duì)采用直接接觸方式進(jìn)行數(shù)據(jù)收集的應(yīng)用,由于移動(dòng)節(jié)點(diǎn)的低速會(huì)引起較大的數(shù)據(jù)收集時(shí)延。據(jù)觀察,數(shù)據(jù)收集時(shí)延可以通過(guò)局部數(shù)據(jù)匯聚得到有效縮減,該類(lèi)方法通常聯(lián)合考慮移動(dòng)性控制和路由。由于傳感節(jié)點(diǎn)受到制作工藝、部署方式和工作環(huán)境等因素的制約,節(jié)點(diǎn)很容易發(fā)生故障。故障節(jié)點(diǎn)的存在為數(shù)據(jù)收集工作帶來(lái)了很多不利影響,如收集信息的不精確、能量效率低下、數(shù)據(jù)路由不可靠等。因而,如何從數(shù)目眾多的節(jié)點(diǎn)中識(shí)別出故障節(jié)點(diǎn)并且構(gòu)建容錯(cuò)的路由機(jī)制,進(jìn)而保證網(wǎng)絡(luò)的可靠性引起了研究者越來(lái)越多的重視。 本文在深入分析現(xiàn)有研究成果的基礎(chǔ)上,圍繞WSN-MEs中數(shù)據(jù)收集這一核心問(wèn)題,展開(kāi)三個(gè)方面問(wèn)題的研究,主要工作包括: 1.針對(duì)高效容錯(cuò)的動(dòng)態(tài)路由構(gòu)建,給出了一種基于格的實(shí)時(shí)數(shù)據(jù)收集協(xié)議:(1)提出一個(gè)基于功率控制的彈性的和均勻的格劃分模式,將網(wǎng)絡(luò)拓?fù)鋭澐譃槎S虛擬格結(jié)構(gòu),以此達(dá)到良好的網(wǎng)絡(luò)擴(kuò)展性和減少通信時(shí)的數(shù)據(jù)傳輸跳數(shù)。(2)提出了一種成員節(jié)點(diǎn)競(jìng)爭(zhēng)格頭的選舉機(jī)制,將網(wǎng)絡(luò)分成層次結(jié)構(gòu)。該機(jī)制考慮節(jié)點(diǎn)的剩余能量,很好地平衡了網(wǎng)絡(luò)節(jié)點(diǎn)的能量消耗,,從而可以有效延長(zhǎng)網(wǎng)絡(luò)壽命。(3)給出了一個(gè)初始最優(yōu)數(shù)據(jù)收集樹(shù)的分布式構(gòu)建方法。為了降低數(shù)據(jù)傳輸時(shí)延,消息僅在格頭組成的高層骨干網(wǎng)中傳播,有助于降低消息復(fù)雜度。(4)理論分析和仿真結(jié)論證明了本方法的有效性,即在不同的參數(shù)設(shè)定下,協(xié)議均可以達(dá)到較好的效果。 2.針對(duì)移動(dòng)元素的路線規(guī)劃問(wèn)題,給出了中繼跳約束下基于集結(jié)模式的數(shù)據(jù)收集算法:(1)定義了在中繼跳數(shù)約束下基于集結(jié)點(diǎn)RN(rendezvous node)的移動(dòng)數(shù)據(jù)收集問(wèn)題MDC-RN(mobile data collection based on rendezvous nodes),該問(wèn)題聯(lián)合考慮移動(dòng)節(jié)點(diǎn)的巡行和匯聚樹(shù)中的數(shù)據(jù)路由,并證明了該問(wèn)題是NP難的。(2)針對(duì)定義的MDC-RN問(wèn)題,我們給出了兩個(gè)高效的基于集結(jié)模式的數(shù)據(jù)收集算法加以解決。第一個(gè)是從當(dāng)前節(jié)點(diǎn)d跳鄰居中優(yōu)先選擇具有最大負(fù)載節(jié)點(diǎn)作為RN候選的啟發(fā)式算法;第二個(gè)算法針對(duì)WSNs特征,以分布式迭代確定RN,然后基于確定的RN,使用解決旅行售貨商問(wèn)題TSP(traveling salesman problem)的相關(guān)算法產(chǎn)生移動(dòng)節(jié)點(diǎn)的巡行。移動(dòng)節(jié)點(diǎn)沿該巡行周期性地訪問(wèn)這些RN,并通過(guò)單跳或有限跳收集其上緩存的數(shù)據(jù)。(3)理論分析和仿真實(shí)驗(yàn)驗(yàn)證了所提出算法的有效性。 3.針對(duì)數(shù)據(jù)收集的可靠性問(wèn)題,給出了基于比較模型的節(jié)點(diǎn)故障診斷和容錯(cuò)路由機(jī)制:(1)探索將比較模型用于WSNs節(jié)點(diǎn)的故障診斷,基于故障診斷的RN選舉消除了故障節(jié)點(diǎn)充當(dāng)RN的可能性,減少了能量的消耗和故障信息的傳播。(2)基于有向無(wú)環(huán)圖DAG(directed acyclic graph)構(gòu)建的多路路由機(jī)制,增加了系統(tǒng)的容錯(cuò)性。(3)RN選擇和多跳路由機(jī)制分別考慮節(jié)點(diǎn)的剩余能量和傳輸代價(jià),二者交替執(zhí)行構(gòu)成基于“輪”的協(xié)議,平衡了網(wǎng)絡(luò)中節(jié)點(diǎn)的能量消耗,提高了網(wǎng)絡(luò)的能量效率。(4)仿真實(shí)驗(yàn)顯示,所提出的協(xié)議在通信開(kāi)銷(xiāo)、診斷延遲和能量效率等方面與類(lèi)似協(xié)議相比均具有一定的優(yōu)勢(shì)。
[Abstract]:Wireless sensor network (WSNs) has become an attractive technology covering large range of applications. Most traditional WSN architectures are composed of static nodes densely deployed in the sensing area, and nodes transmit the collected data to the base station through single hop or multi hop communication. In recent years, the mobile element MEs (MO) is introduced into the traditional WSNs. Bile elements to improve the efficiency of the network has become a hot spot of research. Compared with traditional static WSNs, wireless sensor networks with mobile elements (WSN-MEs) significantly improve the energy efficiency of the network and effectively reduce the cost of networking. However, mobility management brings many challenges to static WSNs. For WSN-MEs data collection and application, According to different scenarios, different patterns can be used: for the application of high real-time event monitoring class, it is a challenge to capture mobile element trajectory and build multi hop dynamic routing. The application of data collection using direct contact mode will cause large data collection delay due to the low speed of mobile node. Data collection delay can be effectively reduced through local data convergence. This kind of method usually considers mobility control and routing. Because sensing nodes are restricted by factors such as manufacturing technology, deployment mode and working environment, nodes are easy to fail. The existence of fault nodes brings a lot of adverse effects on data collection work. Such as inaccuracy of collecting information, low energy efficiency and unreliable data routing, how to identify fault nodes from a large number of nodes and build fault-tolerant routing mechanism, thus ensuring the reliability of the network, has caused more and more attention to the researchers.
On the basis of in-depth analysis of the existing research results, this paper focuses on the core issue of data collection in WSN-MEs and launches three aspects of research. The main work includes:
1. aiming at the dynamic routing construction of efficient fault-tolerant, a real-time data collection protocol based on lattice is given. (1) a flexible and uniform grid partition mode based on power control is proposed, and the network topology is divided into two dimensional virtual lattice structure to achieve good network scalability and reduce the number of data transmissions during communication. (2) An election mechanism of the competitive grid head of a member node is presented, which divides the network into a hierarchical structure. The mechanism considers the residual energy of the node, balances the energy consumption of the network nodes, and can effectively prolong the network lifetime. (3) a distributed construction method for the initial optimal data collection tree is given. The message is propagated only in the high level backbone of the lattice head, which helps to reduce the complexity of the message. (4) theoretical analysis and simulation results prove the effectiveness of this method, that is, the protocol can achieve better results under different parameters.
2. for the routing problem of mobile elements, a data collection algorithm based on aggregation mode is given under the relay hop constraint. (1) the mobile data collection problem MDC-RN (mobile data collection based on rendezvous nodes) under the relay hop count constraint RN (mobile data collection based on rendezvous nodes) is defined. The problem is combined to consider the mobile node. The cruising and data routing in the aggregation tree prove that the problem is NP difficult. (2) for the defined MDC-RN problem, we give two efficient data collection algorithms based on the aggregation mode. The first is to select the heuristic algorithm with the largest load node as the RN candidate from the current node D hop neighbor; The second algorithm identifies RN with a distributed iteration for the WSNs feature, and then based on the determined RN, uses a related algorithm to solve the traveling salesman problem TSP (traveling salesman problem). The mobile node visits the RN periodically along the patrol and collects the data cached by a single hop or a finite jump. (3) Theoretical analysis and simulation experiments verify the effectiveness of the proposed algorithm.
3. in view of the reliability problem of data collection, the node fault diagnosis and fault-tolerant routing mechanism based on comparison model are given: (1) the comparison model is used to diagnose the fault of WSNs nodes, and the RN election based on fault diagnosis eliminates the possibility that the fault node acts as the RN, reduces the energy consumption and the propagation of fault information. (2) based on the The multipath routing mechanism constructed by the acyclic graph DAG (directed acyclic graph) increases the fault tolerance of the system. (3) the RN selection and the multi hop routing mechanism consider the residual energy and transmission cost of the nodes respectively. The two ones are implemented alternately to form a "wheel" protocol, which balances the energy consumption of nodes in the network and improves the energy efficiency of the network. (4) Simulation results show that the proposed protocol has some advantages over similar protocols in terms of communication overhead, delay in diagnosis and energy efficiency.
【學(xué)位授予單位】:蘇州大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TN929.5;TP212.9
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 丁杰;劉丹譜;;移動(dòng)Sink環(huán)境下的無(wú)線傳感器網(wǎng)絡(luò)數(shù)據(jù)收集節(jié)能算法[J];北京郵電大學(xué)學(xué)報(bào);2013年05期
2 李建中;高宏;;無(wú)線傳感器網(wǎng)絡(luò)的研究進(jìn)展[J];計(jì)算機(jī)研究與發(fā)展;2008年01期
3 方效林;石勝飛;李建中;;無(wú)線傳感器網(wǎng)絡(luò)一種不相交路徑路由算法[J];計(jì)算機(jī)研究與發(fā)展;2009年12期
4 俞靚;王志波;駱吉安;孫喜策;王智;;面向移動(dòng)目標(biāo)追蹤的無(wú)線傳感器網(wǎng)絡(luò)QoS指標(biāo)體系設(shè)計(jì)[J];計(jì)算機(jī)學(xué)報(bào);2009年03期
5 于磊磊;陳冬巖;劉月美;黃旭;;中心計(jì)算的無(wú)線傳感器網(wǎng)絡(luò)2-不相交路徑路由算法[J];計(jì)算機(jī)研究與發(fā)展;2013年03期
6 杜瑩;程普;;基于簇的分布式傳感器故障檢測(cè)算法[J];計(jì)算機(jī)工程;2014年02期
7 張希偉;戴海鵬;徐力杰;陳貴海;;無(wú)線傳感器網(wǎng)絡(luò)中移動(dòng)協(xié)助的數(shù)據(jù)收集策略[J];軟件學(xué)報(bào);2013年02期
本文編號(hào):1802773
本文鏈接:http://sikaile.net/kejilunwen/wltx/1802773.html