平面波激勵(lì)下傳輸線響應(yīng)分析與計(jì)算
本文選題:平面極化波 切入點(diǎn):空間矢量分解 出處:《國(guó)防科學(xué)技術(shù)大學(xué)》2014年碩士論文
【摘要】:由于電磁環(huán)境的日益惡化,外場(chǎng)激勵(lì)下傳輸線系統(tǒng)的響應(yīng)分析與計(jì)算已經(jīng)成為計(jì)算電磁學(xué)和電磁兼容領(lǐng)域的重要課題。本文主要針對(duì)兩類傳輸線結(jié)構(gòu)——雙導(dǎo)體傳輸線和帶多條導(dǎo)電脊的PCB板——進(jìn)行研究,分析了平面極化波的場(chǎng)線耦合途徑,通過等效模型和改進(jìn)后的BLT方程,進(jìn)行響應(yīng)的分析與計(jì)算。通過數(shù)值仿真實(shí)驗(yàn)進(jìn)一步驗(yàn)證了本文方法的有效性,并得出平面波激勵(lì)響應(yīng)的量級(jí)和傳播特性,這對(duì)電磁防護(hù)工作有現(xiàn)實(shí)的指導(dǎo)意義。本文通過幾個(gè)步驟對(duì)外場(chǎng)激勵(lì)響應(yīng)進(jìn)行了研究——空間矢量分解、分布參數(shù)提取、傳輸線方程推導(dǎo)、方程求解的數(shù)值技巧和BLT模型的進(jìn)一步改進(jìn)。1、給出了雙導(dǎo)線受平面波激勵(lì)下的空間矢量分解,借助方位角、極化角等概念確定場(chǎng)分量的解析表達(dá)式。對(duì)于結(jié)構(gòu)復(fù)雜的PCB板,本文把一般的反射系數(shù)推廣為廣義反射系數(shù),得到等效場(chǎng)的矢量分解形式。2、分布參數(shù)的提取是響應(yīng)求解的基礎(chǔ),本文給出了一般類型的傳輸線結(jié)構(gòu)的分布參數(shù)解析表達(dá)式,并針對(duì)一類非平行的傳輸線,基于電路參數(shù)的物理含義,通過積分過程來確定相應(yīng)場(chǎng)量,得到傳輸線分布參數(shù)的數(shù)值計(jì)算公式。3、研究了平面極化波激勵(lì)下PCB板的響應(yīng)問題。本文把PCB板等效為多導(dǎo)體傳輸線結(jié)構(gòu),給出相應(yīng)分布參數(shù)的數(shù)值計(jì)算公式,在對(duì)外場(chǎng)進(jìn)行矢量分解后,通過應(yīng)用經(jīng)修正的BLT模型和多導(dǎo)體傳輸線方程求解響應(yīng)結(jié)果。4、對(duì)本文建立的模型方法進(jìn)行數(shù)值仿真。仿真結(jié)果表明本文方法在時(shí)域、頻域上都有較好的擬合,進(jìn)一步驗(yàn)證了模型的有效性。得出以下結(jié)論:1伏特的激勵(lì)電壓在PCB的導(dǎo)電脊上產(chǎn)生的響應(yīng)電壓的量級(jí)為10-3V;時(shí)域、頻域形式的感應(yīng)電壓都存在零點(diǎn),這些特殊的頻點(diǎn)或時(shí)間點(diǎn)都與傳輸線結(jié)構(gòu)有關(guān);在含兩條導(dǎo)電脊的PCB板上,感應(yīng)電壓值要大于串?dāng)_電壓值。
[Abstract]:Due to the worsening of the electromagnetic environment, The response analysis and calculation of transmission line system under external field excitation has become an important subject in the field of computational electromagnetics and electromagnetic compatibility. In this paper, two kinds of transmission line structures-double conductor transmission lines and PCB plates with multiple conducting ridges are studied. The field-line coupling method of plane polarization wave is analyzed, and the response is analyzed and calculated by the equivalent model and the improved BLT equation. The effectiveness of the proposed method is further verified by numerical simulation. The magnitude and propagation characteristics of the plane wave excitation response are obtained, which is of practical significance for electromagnetic protection. In this paper, the space vector decomposition and distribution parameter extraction are studied through several steps of external field excitation response. The derivation of transmission line equation, the numerical technique of solving the equation and the further improvement of BLT model. The space vector decomposition of double conductor excited by plane wave is given, and the azimuth angle is used. For the PCB plate with complex structure, the general reflection coefficient is extended to the generalized reflection coefficient, and the vector decomposition form of equivalent field is obtained. The extraction of the distribution parameter is the basis of the response solution. In this paper, an analytical expression of the distribution parameters of a general type of transmission line structure is given. For a class of non-parallel transmission lines, the corresponding field quantities are determined by the integral process based on the physical meaning of the circuit parameters. The numerical calculation formula of transmission line distribution parameters is obtained. The response problem of PCB plate under plane polarization wave excitation is studied. In this paper, the PCB plate is equivalent to a multi-conductor transmission line structure, and the numerical calculation formula of the corresponding distribution parameters is given. After vector decomposition of the external field, the modified BLT model and the multi-conductor transmission line equation are used to solve the response result .4. the simulation results show that the proposed method is in time domain. The validity of the model is further verified by good fitting in frequency domain. The following conclusions are drawn: the order of response voltage generated by the excitation voltage of 1 volt on the conducting ridge of PCB is 10 ~ (-3) V, and the inductive voltage in time domain and frequency domain is zero. These special frequency points or time points are related to the transmission line structure. On the PCB plate with two conducting ridges, the inductive voltage is larger than the crosstalk voltage.
【學(xué)位授予單位】:國(guó)防科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN811;TN41
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 彭強(qiáng);周東方;侯德亭;胡濤;王利萍;韓晨;;基于BLT方程的微帶線電磁耦合終端響應(yīng)[J];強(qiáng)激光與粒子束;2013年05期
2 彭強(qiáng);周東方;王利萍;劉起坤;饒育萍;韓晨;;微帶線的電磁耦合特性分析及實(shí)驗(yàn)驗(yàn)證[J];信息工程大學(xué)學(xué)報(bào);2013年01期
3 覃宇建;周東明;何建國(guó);;BLT方程在任意布局傳輸線串?dāng)_分析中的應(yīng)用[J];國(guó)防科技大學(xué)學(xué)報(bào);2009年02期
4 安霆;劉尚合;;基于BLT方程的電磁干擾建模[J];高電壓技術(shù);2007年12期
5 倪谷炎;羅建書;李傳臚;;Taylor與Agrawal模型的解析求解與模型比較[J];強(qiáng)激光與粒子束;2007年09期
6 范穎鵬,杜正偉,龔克,張肅;微帶線電路板端口對(duì)入射電磁波的電壓響應(yīng)[J];強(qiáng)激光與粒子束;2005年03期
7 林競(jìng)羽,周東方,毛天鵬,胡濤;電磁拓?fù)浞治鲋械腂LT方程及其應(yīng)用[J];信息工程大學(xué)學(xué)報(bào);2004年02期
8 張希,劉宗行,孫韜;傳輸線方程的一種數(shù)值解法[J];重慶大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年02期
相關(guān)博士學(xué)位論文 前2條
1 張旭鋒;傳輸線理論及電磁兼容計(jì)算的半解析方法研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2011年
2 張卉;非均勻傳輸線場(chǎng)路特性研究[D];北京交通大學(xué);2008年
相關(guān)碩士學(xué)位論文 前1條
1 鐘政良;系統(tǒng)布線的電磁兼容研究[D];西安電子科技大學(xué);2006年
,本文編號(hào):1682627
本文鏈接:http://sikaile.net/kejilunwen/wltx/1682627.html