基于WBAN標(biāo)準(zhǔn)收發(fā)機研究與設(shè)計
本文選題:無線體域網(wǎng) 切入點:收發(fā)機 出處:《電子科技大學(xué)》2014年碩士論文
【摘要】:隨著人口老齡化速度的加快和半導(dǎo)體產(chǎn)業(yè)的發(fā)展,用于人體健康應(yīng)用的無線通信系統(tǒng)應(yīng)運而生。從1996年體域網(wǎng)概念的最早提出到2012年IEEE802.15.6標(biāo)準(zhǔn)的正式確立,無線體域網(wǎng)(WBAN)系統(tǒng)設(shè)計與應(yīng)用是近年來研究的熱門課題。本文研究的主要內(nèi)容是參考協(xié)議標(biāo)準(zhǔn)和目前日本和歐美的無線體域網(wǎng)應(yīng)用,設(shè)計用于無線體域網(wǎng)的接收機和發(fā)射機。首先對比了WBAN的各個物理層,分析了各個物理層的應(yīng)用環(huán)境、優(yōu)勢和不足,本文的收發(fā)機主要工作在其中的400MHz頻段。400MHz在以人體為傳播媒介的傳輸中衰減較小這一特點,決定了該頻率主要用于植入芯片。收發(fā)機系統(tǒng)要求工作在400MHz~450MHz范圍,帶寬為1MHz,數(shù)據(jù)率為50kbps~150kbps,調(diào)制方式主要是π/2-DBPSK,π/4-DQPSK和GMSK。發(fā)射端要求最大輸出功率大于0dBm,誤差矢量模(EVM)因調(diào)制方式而異,約-11~-20dB,同時,要求發(fā)射機的相鄰信道功率比為-26dB。接收端要求靈敏度為-84~-95dBm,鄰道抑制為6~17dB,接收功率在-90dBm~-40dBm之間,此外,要求到達接收機輸出端的信號SNR為12dB。本文列舉了各種接收機和發(fā)射機結(jié)構(gòu),并分析了各自的優(yōu)缺點,最終根據(jù)設(shè)計要求選擇了低中頻結(jié)構(gòu),折中了頻帶選擇和信道選擇,最終中頻選擇為2MHz。系統(tǒng)工作頻段覆蓋400MHz~450MHz,屬于窄帶系統(tǒng),可以利用電感源級反饋結(jié)構(gòu)低噪聲放大器的低噪聲系數(shù)和低功耗優(yōu)勢;祛l器選用的是雙平衡有源結(jié)構(gòu),提高系統(tǒng)的線性度和消除偶次諧波失真;祛l器下變頻到I/Q兩路信號,中頻信號經(jīng)過復(fù)數(shù)濾波器,最后經(jīng)過PGA放大輸出。濾波器選用的是有源Gm-C結(jié)構(gòu),實現(xiàn)了中心頻率為2MHz,帶寬為1MHz,能滿足信道選擇和鏡像抑制的復(fù)數(shù)濾波器。為了應(yīng)對直流失調(diào)問題,PGA采用了DCOC輔助結(jié)構(gòu)。對于發(fā)射機端,主要是對PA的考慮,本文選擇的是AB類結(jié)構(gòu),能很好的滿足設(shè)計要求。本次設(shè)計選用的是GSMC0.18um工藝,從電路設(shè)計到版圖規(guī)劃實現(xiàn)都是在cadence環(huán)境下設(shè)計完成,部分設(shè)計中用到MATLAB,主要仿真工具為Spectre/SpectreRF。最終仿真結(jié)果顯示,接收部分噪聲系數(shù)為5dB,增益覆蓋范圍25~100dB,發(fā)射端最大輸出功率為10dBm,其他各項指標(biāo)都能滿足設(shè)計要求。
[Abstract]:With the acceleration of population aging and the development of semiconductor industry, wireless communication systems for human health applications have emerged. From the earliest concept of body area network in 1996 to the formal establishment of IEEE802.15.6 standard in 2012, The design and application of wireless body area network (WLAN) system is a hot topic in recent years. The main contents of this paper are the reference protocol standards and the current wireless body area network applications in Japan, Europe and the United States. The receiver and transmitter are designed for wireless body area network. Firstly, the physical layer of WBAN is compared, and the application environment, advantages and disadvantages of each physical layer are analyzed. In this paper, the transceiver mainly works in the 400MHz frequency band. 400MHz has less attenuation in the transmission using human body as the transmission medium, which determines that the frequency is mainly used for the chip implantation. The transceiver system requires that the transceiver system work in the 400MHz~450MHz range. The bandwidth is 1MHz and the data rate is 150kbps. the modulation mode is mainly 蟺 / 2-DBPSK, 蟺 / 4-DQPSK and GMSK. The maximum output power required by the transmitter is greater than 0dBm.The error vector mode (EVM) varies according to the modulation mode, about -11-20dB. at the same time, The adjacent channel power ratio of the transmitter is required to be -26dB. the sensitivity of the receiver is -84 ~ 95dBm, the adjacent channel suppression is 610dB, the receiving power is between -90dBmO and 40dBm. In addition, the signal SNR to the output end of the receiver is required to be 12dB.A variety of receiver and transmitter structures are listed in this paper. Their advantages and disadvantages are analyzed. Finally, the low intermediate frequency structure is selected according to the design requirements, and the intermediate frequency band selection and channel selection are compromised. The final intermediate frequency selection is 2MHz. The operating frequency band of the system covers 400MHz / 450MHz, which belongs to the narrowband system. The advantages of low noise coefficient and low power consumption of the low noise amplifier with inductance feedback structure can be utilized. The mixer uses a dual balanced active structure to improve the linearity of the system and eliminate even harmonic distortion. The mixer can be down-converted to the I / Q signal. The intermediate frequency signal passes through the complex number filter, and finally the output is amplified by PGA. The filter uses the active Gm-C structure. A complex filter with a central frequency of 2 MHz and a bandwidth of 1 MHz is realized. In order to cope with the DC misalignment problem, the DCOC auxiliary structure is adopted. For the transmitter, PA is mainly considered. This article chooses the AB class structure, can satisfy the design request very well. This design uses the GSMC0.18um process, from the circuit design to the layout plan realization is under the cadence environment design completes, MATLAB is used in part of the design, the main simulation tool is Spectre-SpectreRF.The final simulation results show that the received part of the noise coefficient is 5 dB, the gain coverage range is 25 ~ 100 dB, the maximum output power of the transmitter is 10 dBm. the other indexes can meet the design requirements.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TN859
【相似文獻】
相關(guān)期刊論文 前10條
1 曹天乙;介紹一種晶體管自差收發(fā)機[J];兵工學(xué)報(引信分冊);1980年02期
2 趙明發(fā);;某雷達收發(fā)機的機械設(shè)計[J];電子機械工程;1989年04期
3 楊永礦;一種可在較大的溫度范圍內(nèi)高速運轉(zhuǎn)的非冷卻收發(fā)機[J];應(yīng)用光學(xué);1997年06期
4 李明齊;芮峗;張小東;周秦英;劉廣宇;;基于離散傅立葉變換擴頻的廣義多載波系統(tǒng)收發(fā)機頻域簡化實現(xiàn)方法[J];高技術(shù)通訊;2009年01期
5 楊小龍;;四通道比例遙控收發(fā)機控制系統(tǒng)的設(shè)計[J];武漢工業(yè)學(xué)院學(xué)報;2012年01期
6 邱賜云;;低壓電力線載波通信收發(fā)機架構(gòu)設(shè)計[J];計算機應(yīng)用與軟件;2013年04期
7 施聚生;自差收發(fā)機靈敏度的工程計算[J];兵工學(xué)報;1981年04期
8 施聚生 ,周勇;自差收發(fā)機的低頻模擬[J];兵工學(xué)報(引信分冊);1983年03期
9 Oscar Agazzi ,慶林;絞合線對上工作的全雙工數(shù)字收發(fā)機模擬前端[J];微電子學(xué);1989年06期
10 曹;;收發(fā)機結(jié)構(gòu)簡化了長期的光纖問題[J];光纖與電纜及其應(yīng)用技術(shù);1993年03期
相關(guān)會議論文 前1條
1 彭婧;房宗良;徐權(quán)周;曹劍鋒;文其林;;一種基于以太網(wǎng)收發(fā)機的遠程輻射監(jiān)測[A];第十六屆全國核電子學(xué)與核探測技術(shù)學(xué)術(shù)年會論文集(下冊)[C];2012年
相關(guān)重要報紙文章 前2條
1 cyf 編譯;射頻CMOS功率放大器——理論、設(shè)計及運行(2)[N];電子報;2008年
2 阿駿;無線快“貓”躍然網(wǎng)上[N];中國教育報;2000年
相關(guān)博士學(xué)位論文 前1條
1 高佩君;無線傳感器網(wǎng)絡(luò)收發(fā)機芯片設(shè)計[D];復(fù)旦大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 鄭昊;衛(wèi)星電臺收發(fā)機射頻前端的研究與實現(xiàn)[D];蘭州大學(xué);2015年
2 蘇萍;8×100 Gb/s全光偏振復(fù)用OFDM收發(fā)機技術(shù)研究[D];電子科技大學(xué);2014年
3 彭媛;基于WBAN標(biāo)準(zhǔn)收發(fā)機研究與設(shè)計[D];電子科技大學(xué);2014年
4 周華;高性能無線通信收發(fā)機邏輯與控制系統(tǒng)的研究與實現(xiàn)[D];北京郵電大學(xué);2010年
5 曹艷平;多制式無線收發(fā)機數(shù)字前端模塊的設(shè)計與實現(xiàn)[D];北京郵電大學(xué);2010年
6 劉韻清;低功耗短距無線收發(fā)機中基帶控制電路的設(shè)計[D];西安電子科技大學(xué);2014年
7 郭思宇;基于FPGA的局部定位系統(tǒng)無線收發(fā)機的設(shè)計與實現(xiàn)[D];蘇州大學(xué);2013年
8 黃成鈺;Ku波段微波收發(fā)機前端電路設(shè)計[D];電子科技大學(xué);2013年
9 羅斌;基于340MHz無線收發(fā)機的接口板設(shè)計與實現(xiàn)[D];華南理工大學(xué);2011年
10 谷東明;近距離無線通信(NFC)收發(fā)機模擬前端電路設(shè)計[D];復(fù)旦大學(xué);2012年
,本文編號:1656872
本文鏈接:http://sikaile.net/kejilunwen/wltx/1656872.html