基于機(jī)載激光雷達(dá)的林木特征研究
本文選題:激光雷達(dá) 切入點(diǎn):點(diǎn)云數(shù)據(jù) 出處:《中南林業(yè)科技大學(xué)》2014年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:森林資源作為最大的陸地資源,它的變化不僅關(guān)系著社會(huì)經(jīng)濟(jì)的發(fā)展,而且對(duì)生態(tài)環(huán)境也有巨大的影響。近年來(lái)人類(lèi)環(huán)保意識(shí)的提高,森林資源的重要性得到更加廣泛的認(rèn)知。因此高效地獲取森林資源狀況成為必然的趨勢(shì)。森林是由單株的樹(shù)木構(gòu)成,準(zhǔn)確的森林單株木參數(shù)是獲得詳細(xì)森林資源狀況的保證,所以準(zhǔn)確獲取高精度單株木參數(shù)意義深遠(yuǎn)。雖傳統(tǒng)的光學(xué)遙感在林業(yè)領(lǐng)域應(yīng)用廣泛,但是僅僅能夠提供簡(jiǎn)單的空間和光譜信息,遠(yuǎn)遠(yuǎn)無(wú)法滿足森林資源調(diào)查的需求。機(jī)載激光雷達(dá)技術(shù),作為現(xiàn)代對(duì)地觀測(cè)的新技術(shù)之一,與其它遙感測(cè)繪方法相比,該技術(shù)的主要優(yōu)勢(shì)為能夠快速、直接的獲取地物表面的三維坐標(biāo)數(shù)據(jù)。因此,近幾年來(lái)在森林資源調(diào)查、城市三維測(cè)繪等領(lǐng)域取得了廣泛的應(yīng)用。在森林植被地區(qū),由于機(jī)載激光雷達(dá)系統(tǒng)發(fā)出的激光束有一定的穿透性,可穿透植被到達(dá)地表。因此利用此技術(shù),可以獲取樹(shù)冠表面和地表面的三維數(shù)據(jù)。 本文以利用LiDAR數(shù)據(jù)獲取單木尺度的參數(shù)為目的,進(jìn)行了以下的研究工作: (1)樹(shù)冠高度模型的獲取。本文運(yùn)用不規(guī)則三角網(wǎng)濾波算法對(duì)雷達(dá)點(diǎn)云進(jìn)行濾波處理,通過(guò)濾波分出地面點(diǎn)、植被點(diǎn)、異常點(diǎn)、房屋點(diǎn)等,達(dá)到了很好的分類(lèi)效果,將分類(lèi)的地面點(diǎn)及植被激光點(diǎn)分別生成數(shù)字地面模型和數(shù)字地表模型,二者做差運(yùn)算得到樹(shù)冠高度模型。 (2)樹(shù)冠高度模型優(yōu)化算法。樹(shù)冠高度模型中包括了很多高程漏洞直接或間接地影響了基于樹(shù)冠高度模型的各種森林參數(shù)提取精度。本文提出了一種新的方法解決這個(gè)問(wèn)題,通過(guò)形態(tài)學(xué)的閉運(yùn)算獲取到平滑的樹(shù)冠高度模型,再通過(guò)樹(shù)冠高度模型矩陣的歸一化、二值化、卷積等運(yùn)算過(guò)程,用平滑高程值替換掉樹(shù)冠高度模型中異常的高程值點(diǎn),樹(shù)冠與樹(shù)冠之間的低點(diǎn)保留下來(lái),使得連續(xù)的樹(shù)冠被修復(fù)和對(duì)齊。 (3)對(duì)優(yōu)化后的樹(shù)冠高度模型進(jìn)行多尺度單株木分離。面向?qū)ο蟮亩喑叨确指钍菑囊粋(gè)像素的對(duì)象開(kāi)始進(jìn)行一個(gè)自下至上的區(qū)域合并技術(shù),小的影像對(duì)象可以合并到稍大的對(duì)象中去。本研究運(yùn)用面向?qū)ο蟮亩喑叨确指罘椒?將樹(shù)冠高度模型生成圖像對(duì)象原型,通過(guò)設(shè)置不同的尺度參數(shù)來(lái)實(shí)現(xiàn)區(qū)域生長(zhǎng)算法,完成了對(duì)研究區(qū)域的樹(shù)冠高度模型的分割,取得了理想的分割效果。 (4)最后通過(guò)建立雷達(dá)估測(cè)林木特征值與實(shí)測(cè)林木特征值的線性回歸關(guān)系,對(duì)單株木的樹(shù)高和冠幅進(jìn)行反演。冠幅估測(cè)的平均精度達(dá)到88%,樹(shù)高估測(cè)的平均精度高達(dá)89%。
[Abstract]:Forest resources as the largest land resources, its changes not only related to the development of social and economic, but also has a huge impact on the ecological environment. The importance of forest resources is more widely recognized. Therefore, efficient access to forest resources has become an inevitable trend. Forests are made up of individual trees, and accurate parameters of individual forest trees are the guarantee of obtaining detailed information on forest resources. So it is of great significance to accurately obtain the parameters of single tree. Although traditional optical remote sensing is widely used in forestry, it can only provide simple spatial and spectral information. The airborne lidar technology, as one of the new technologies of modern earth observation, has the advantage of being able to quickly compare with other remote sensing mapping methods. Therefore, in recent years, it has been widely used in forest resource survey, urban three-dimensional mapping and other fields. Since the laser beam emitted by the airborne lidar system can penetrate the vegetation to the surface of the earth, the 3D data of the crown surface and the ground surface can be obtained by using this technique. In order to obtain the parameters of single tree scale using LiDAR data, the following research work has been done in this paper:. This paper uses irregular triangular network filter algorithm to filter radar point cloud, through filtering out ground points, vegetation points, outliers, housing points and so on, achieves very good classification effect. The classified ground points and the vegetation laser points were used to generate the digital ground model and the digital surface model respectively. The crown height model was obtained by the difference operation between the two models. This paper presents a new method to solve this problem, which includes many height holes that directly or indirectly affect the extraction accuracy of various forest parameters based on tree crown height model. The smooth crown height model is obtained by the closed operation of morphology, and then the abnormal elevation point in the tree crown height model is replaced by the smooth elevation value through the normalization, binarization and convolution of the tree crown height model matrix. The low point between the crown and the crown remains, allowing successive crowns to be repaired and aligned. The optimized tree crown height model is separated by multi-scale single tree. Object-oriented multi-scale segmentation is a bottom-up region merging technique, which starts with a pixel object. Small image objects can be merged into larger objects. In this study, the tree crown height model is used to generate the image object prototype by using the object-oriented multi-scale segmentation method, and the region growth algorithm is realized by setting different scale parameters. The crown height model of the studied area is segmented and the ideal segmentation effect is obtained. Finally, by establishing the linear regression relationship between the characteristic values of trees estimated by radar and the measured values of trees, the tree height and crown width of individual trees are inversed. The average accuracy of the estimation of crown amplitude is 88%, the average precision of tree height estimation is up to 89%.
【學(xué)位授予單位】:中南林業(yè)科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TN958.98
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張小紅,劉經(jīng)南;機(jī)載激光掃描測(cè)高數(shù)據(jù)濾波[J];測(cè)繪科學(xué);2004年06期
2 張齊勇;岑敏儀;周?chē)?guó)清;楊曉云;;城區(qū)LiDAR點(diǎn)云數(shù)據(jù)的樹(shù)木提取[J];測(cè)繪學(xué)報(bào);2009年04期
3 何祺勝;陳爾學(xué);曹春香;劉清旺;龐勇;;基于LIDAR數(shù)據(jù)的森林參數(shù)反演方法研究[J];地球科學(xué)進(jìn)展;2009年07期
4 盛仲飆;;基于Matlab的圖像去噪算法研究[J];河南科學(xué);2011年10期
5 陳卓;馬洪超;鄔建偉;;基于機(jī)載LiDAR數(shù)據(jù)的三維樹(shù)木建模方法[J];計(jì)算機(jī)工程;2012年04期
6 張俊;汪云甲;李妍;王行風(fēng);;一種面向?qū)ο蟮母叻直媛视跋褡顑?yōu)分割尺度選擇算法[J];科技導(dǎo)報(bào);2009年21期
7 龐勇;李增元;譚炳香;劉清旺;趙峰;周淑芳;;點(diǎn)云密度對(duì)機(jī)載激光雷達(dá)林分高度反演的影響[J];林業(yè)科學(xué)研究;2008年S1期
8 李奇;馬洪超;鄔建偉;田禮喬;;機(jī)載小光斑LIDAR的森林參數(shù)評(píng)估[J];林業(yè)資源管理;2008年01期
9 賴(lài)旭東,萬(wàn)幼川;一種針對(duì)激光雷達(dá)強(qiáng)度圖像的濾波算法研究[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2005年02期
10 薄樹(shù)奎;韓新超;丁琳;;面向?qū)ο笥跋穹诸?lèi)中分割參數(shù)的選擇[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2009年05期
相關(guān)博士學(xué)位論文 前4條
1 劉麗娟;基于機(jī)載LiDAR和高光譜融合的森林參數(shù)反演研究[D];東北林業(yè)大學(xué);2011年
2 駱社周;激光雷達(dá)遙感森林葉面積指數(shù)提取方法研究與應(yīng)用[D];中國(guó)地質(zhì)大學(xué)(北京);2012年
3 劉清旺;機(jī)載激光雷達(dá)森林參數(shù)估測(cè)方法研究[D];中國(guó)林業(yè)科學(xué)研究院;2009年
4 趙旦;基于激光雷達(dá)和高光譜遙感的森林單木關(guān)鍵參數(shù)提取[D];中國(guó)林業(yè)科學(xué)研究院;2012年
,本文編號(hào):1609156
本文鏈接:http://sikaile.net/kejilunwen/wltx/1609156.html