基于ZigBee的變電站一次設(shè)備狀態(tài)監(jiān)測(cè)系統(tǒng)
本文關(guān)鍵詞:基于ZigBee的變電站一次設(shè)備狀態(tài)監(jiān)測(cè)系統(tǒng) 出處:《安徽理工大學(xué)》2014年碩士論文 論文類(lèi)型:學(xué)位論文
更多相關(guān)文章: 變電站設(shè)備 狀態(tài)監(jiān)測(cè) 監(jiān)測(cè)系統(tǒng) ZigBee CC2430 Z-Stack LabVIEW
【摘要】:變電站作為電網(wǎng)的重要組成部分,其安全穩(wěn)定運(yùn)行意義重大。長(zhǎng)期以來(lái),變電站內(nèi)一次設(shè)備的檢修方式以故障檢修和計(jì)劃?rùn)z修為主,這些傳統(tǒng)檢修方式的弊端顯而易見(jiàn)。隨著現(xiàn)代科技水平的不斷發(fā)展,對(duì)一次設(shè)備的運(yùn)行狀態(tài)進(jìn)行在線監(jiān)測(cè),并結(jié)合在線監(jiān)測(cè)的結(jié)果對(duì)一次設(shè)備開(kāi)展檢修,已成為變電站檢修的主要手段。本文設(shè)計(jì)的狀態(tài)監(jiān)測(cè)系統(tǒng)就是對(duì)一次設(shè)備的運(yùn)行狀態(tài)進(jìn)行在線監(jiān)測(cè),發(fā)現(xiàn)異常時(shí)及時(shí)報(bào)警,保障電網(wǎng)安全可靠地運(yùn)行。目前已投入運(yùn)行的設(shè)備在線監(jiān)測(cè)裝置,一般采用有線數(shù)據(jù)傳輸方式。然而,變電站一次設(shè)備數(shù)量很多,結(jié)構(gòu)復(fù)雜,采用有線的數(shù)據(jù)傳輸方式,其布線繁瑣、成本高昂、易遭雷擊及老化,并且裝置的位置不能隨意移動(dòng),靈活性差。因此,本文設(shè)計(jì)的基于ZigBee的變電站一次設(shè)備狀態(tài)監(jiān)測(cè)系統(tǒng)有著實(shí)際意義,它為提高變電站運(yùn)行自動(dòng)化水平和電網(wǎng)的運(yùn)行可靠性提供了一種解決方案。 根據(jù)系統(tǒng)的設(shè)計(jì)要求及預(yù)實(shí)現(xiàn)的功能,將系統(tǒng)的整體結(jié)構(gòu)分為數(shù)據(jù)采集部分、無(wú)線數(shù)據(jù)傳輸部分和上位機(jī)監(jiān)測(cè)三個(gè)部分。在系統(tǒng)硬件設(shè)計(jì)方面,主要是針對(duì)數(shù)據(jù)采集部分和無(wú)線數(shù)據(jù)傳輸部分的設(shè)計(jì)。本文選用TI公司的CC2430芯片為主控芯片,根據(jù)ZigBee網(wǎng)絡(luò)的特點(diǎn),將硬件劃分為協(xié)調(diào)器節(jié)點(diǎn)、路由器節(jié)點(diǎn)和終端節(jié)點(diǎn)三部分,設(shè)計(jì)了各節(jié)點(diǎn)的硬件結(jié)構(gòu)框圖。完成了射頻及擴(kuò)展電路、傳感器電路、電源供電電路、JTAG接口電路、串口通信電路、報(bào)警及復(fù)位電路的設(shè)計(jì)。 在系統(tǒng)的軟件設(shè)計(jì)方面,本文采用TI公司Z-Stack協(xié)議棧,主要是針對(duì)協(xié)議棧應(yīng)用層的開(kāi)發(fā)。設(shè)計(jì)了協(xié)調(diào)器節(jié)點(diǎn)、路由器節(jié)點(diǎn)和終端節(jié)點(diǎn)的軟件流程圖,實(shí)現(xiàn)了終端節(jié)點(diǎn)按照指令采集數(shù)據(jù)并將數(shù)據(jù)進(jìn)行無(wú)線傳輸?shù)墓δ。通信協(xié)議包括無(wú)線通信協(xié)議和串口通信協(xié)議兩部分,分別對(duì)協(xié)調(diào)器節(jié)點(diǎn)的命令幀格式、終端節(jié)點(diǎn)的數(shù)據(jù)幀格式、上位機(jī)的命令幀格式和協(xié)調(diào)器節(jié)點(diǎn)的數(shù)據(jù)幀格式進(jìn)行了設(shè)計(jì)。 在上位機(jī)軟件設(shè)計(jì)方面,利用了NI公司的LabVIEW測(cè)控軟件開(kāi)發(fā)了系統(tǒng)的人機(jī)界面。該界面可以實(shí)時(shí)顯示設(shè)備狀態(tài)數(shù)據(jù),并且在數(shù)據(jù)越界時(shí)進(jìn)行聲光報(bào)警,第一時(shí)間通知管理人員進(jìn)行現(xiàn)場(chǎng)處理,實(shí)現(xiàn)了對(duì)變電設(shè)備運(yùn)行狀態(tài)的實(shí)時(shí)監(jiān)測(cè)。設(shè)計(jì)了上位機(jī)軟件開(kāi)發(fā)流程,包括登陸界面、監(jiān)測(cè)界面、設(shè)備配置、報(bào)警系統(tǒng)、歷史系統(tǒng)和報(bào)表生成六部分。最后,利用LabVIEW軟件完成了狀態(tài)監(jiān)測(cè)系統(tǒng)上位機(jī)監(jiān)測(cè)界面的設(shè)計(jì),實(shí)現(xiàn)了整個(gè)狀態(tài)監(jiān)測(cè)系統(tǒng)的組網(wǎng)運(yùn)行。
[Abstract]:Substation as an important part of the power network, its safe and stable operation is of great significance. For a long time, the primary equipment maintenance mode in substation is mainly fault maintenance and planned maintenance. With the continuous development of modern science and technology, the operation status of primary equipment is monitored on line, and combined with the results of online monitoring, the maintenance of primary equipment is carried out. The condition monitoring system designed in this paper is to monitor the running state of the primary equipment online, and to alarm in time when the abnormal is found. In order to ensure the safe and reliable operation of the power grid, the on-line monitoring device that has been put into operation generally adopts the wired data transmission mode. However, there are a lot of primary equipments in the substation and the structure is complex. Using wired data transmission mode, its wiring is cumbersome, high cost, vulnerable to lightning strike and aging, and the location of the device can not be moved at will, the flexibility is poor. The design of substation primary equipment condition monitoring system based on ZigBee in this paper is of practical significance. It provides a solution for improving the level of substation operation automation and the reliability of power network operation. According to the system design requirements and pre-realized functions, the overall structure of the system is divided into three parts: data acquisition, wireless data transmission and PC monitoring. This paper selects TI CC2430 chip as the main control chip, according to the characteristics of ZigBee network. The hardware is divided into three parts: coordinator node, router node and terminal node. The hardware block diagram of each node is designed. The RF and expansion circuit, sensor circuit and power supply circuit are completed. JTAG interface circuit, serial communication circuit, alarm and reset circuit design. In the software design of the system, this paper adopts the Z-Stack protocol stack of TI company, mainly aiming at the development of the application layer of the protocol stack, designs the coordinator node. The software flow chart of router node and terminal node realizes the function of terminal node collecting data according to instruction and transmitting data wireless. The communication protocol includes wireless communication protocol and serial communication protocol. The command frame format of the coordinator node, the data frame format of the terminal node, the command frame format of the host computer and the data frame format of the coordinator node are designed respectively. In the software design of upper computer, the man-machine interface of the system is developed by using the LabVIEW software of NI company, which can display the state data of the equipment in real time. And when the data across the boundary of acousto-optic alarm, the first time to notify the management to carry out on-site processing, to achieve the real-time monitoring of the operational status of substation equipment, and designed the upper computer software development process, including the landing interface. Monitoring interface, equipment configuration, alarm system, history system and report generation six parts. Finally, using LabVIEW software to complete the design of the monitoring interface of the upper computer of the state monitoring system. The network operation of the whole state monitoring system is realized.
【學(xué)位授予單位】:安徽理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TM63;TN92
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐大可;變電站電氣設(shè)備在線監(jiān)測(cè)綜述[J];變壓器;2002年S1期
2 潘群;向軍;王琳;;RS-485串行通信接口電路的設(shè)計(jì)與應(yīng)用[J];常州工學(xué)院學(xué)報(bào);2009年03期
3 范興明,鄒積巖,叢吉遠(yuǎn);電力變壓器和高壓斷路器狀態(tài)監(jiān)測(cè)技術(shù)的發(fā)展與現(xiàn)狀綜述[J];電氣應(yīng)用;2005年04期
4 周云波;;電力設(shè)備狀態(tài)檢修管理系統(tǒng)的建設(shè)與實(shí)踐[J];電力設(shè)備;2003年06期
5 陳書(shū)欣;陳榮柱;周海峰;;一種SF_6氣體微水含量在線監(jiān)測(cè)裝置[J];電力設(shè)備;2006年06期
6 隨慧斌;王紅紅;王宏偉;許春華;;基于GPRS網(wǎng)絡(luò)的變電站遠(yuǎn)程抄表系統(tǒng)[J];電力系統(tǒng)通信;2007年01期
7 彭粵端;;RS-485在變電站中的改進(jìn)應(yīng)用[J];電力系統(tǒng)通信;2008年02期
8 曹海歐,鄭建勇,蔡月明;基于CAN總線變電站綜合自動(dòng)化通信系統(tǒng)的研究[J];電力系統(tǒng)及其自動(dòng)化學(xué)報(bào);2002年06期
9 ;ZigBee技術(shù)引領(lǐng)無(wú)線數(shù)字新生活[J];電腦知識(shí)與技術(shù);2006年27期
10 黃玉立;童玲;田雨;;基于CC2531+CC2591的WSN節(jié)點(diǎn)通信模塊設(shè)計(jì)[J];單片機(jī)與嵌入式系統(tǒng)應(yīng)用;2011年01期
,本文編號(hào):1400314
本文鏈接:http://sikaile.net/kejilunwen/wltx/1400314.html